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A Computer-Based Decision Support System for Breast Cancer Diagnosis

Introduction

The goal of this project is to develop decision support system for breast cancer diagnosis,
treatment option, prognosis, and risk prediction. This system is desired to function as a
consultation system for both doctors and patients. This pre-doctoral research project is
focusing on the development of advanced image pattern analysis in diagnostic imaging and
information integration methodology. The specific aims of this research project are: (1)
image pattern analysis of breast tissue in mammography using both computational features
and BI-RADS features provided by radiologist for the prediction of malignancy associated
with masses; (2) development of visual presentation methods for radiologists” use in the
consultation system; (3) performing a pre-clinical test through an ROC analysis. The clinical
goal of this consultation system is to provide scientific tools for doctors to have electronic
magnification views, to perform feature analysis of suspected mammographic patterns, to
access a large database and investigate clinically similar cases, and to visually inspect the
features of a case in various statistical distribution using graphic displays. The primary
objectives of the research in the second year are feature extraction, feature database
construction, visual explanation tools development, and feature database structure
exploration using visual explanation tool.




Overview of Training and Research Accomplishment of Phase II
1. Research Skill Training and Literature Background Preparation

In the past year, trainings on research skill gained through working with the mentors
of this project are very important to the whole research process, which made it possible
for me to continue my research work. From the first program for reading and processing
digital mammogram, to the selection of cases, and then to the understanding of
fundamental engineering components that are essential the project development, my
academic advisor Dr. Yue Wang at The Catholic University of America, my mentors Dr.
Shih-Chung Lo and Dr. Matthew Freedmen at Georgetown University provided so much
tremendous help as they can. After one year of research work, my insight on research
approach and ability of problem solving has been gradually established and improved.
We often discussed and reviewed the primary goal of this project in the research process
in order to keep my work in the right direction and give a global view of the all
components of CAD. They helped me write more practical programs for image
processing, and discuss the intermediate results of calculation with me for further
research planning.

Under the guidance of Dr. Wang and Dr. Lo, literature and book searching and
reading gave me better and broader view of breast cancer and computer-assisted
diagnosis (CAD) system research. Through reading engineering textbooks, the
fundamental knowledge that is critical to the project is greatly enhanced. The major
books I have been reading and using as all-time references are Neural Network - A
Comprehensive foundation by Simon Haykin, An Introduction to Signal Detection and
Estimation by H. Vincent Poor, and Elements of Information Theory by Thomas M.
Cover, etc.. After searching and technical papers in several major engineering journals,
such as IEEE Transactions on Medical Imaging, IEEE Transactions on Neural Network,
IEEE Transactions on Pattern Recognition and Machine Intelligence, and Medical
Physics, etc., I have collected almost one hundred of relevant papers for myself to know
works done by other researchers and also set a start point and direction for my own
research. The more I read, the better my ability of understanding and judging others’
work.

2. Research Accomplishments
2.1 Clinical Case and Feature Database Development
2.1.1 Clinical Case Selection
As the first step for establishing a feature database, case searching and selection
are fundamental and crucial for the further research work. In order to detect

suspicious mass regions from a mammogram, we have to be able to find out the major
differences between mass and non-mass regions so that both real mass and non-mass




case groups are needed for comparison purpose. Two major mammogram sample
sources are found proper for the use in this project, one is ISIS at Georgetown
University Medical Center, the other is Mammographic Image Analysis Society
(MIAS) web site that is open for public research use. The ISIS database is constructed
by extracting suspicious mass regions from mammograms by licensed radiologists
and finally proven by biopsy procedure, from where we obtained 125 cases, among
these 75 are mass cases and 50 are non-mass cases. Non-mass cases were selected
from normal breast tissue regions with similarity of mass. In the web site of MIAS,
we found the 36 mass cases and 40 non-mass cases. The total number of cases that
are currently used in the project is 201, and more cases might be added if needed. All
cases are extracted from the whole mammograms as image blocks for further feature
calculation use.

2.1.2 Image Feature Extraction

After the preparation of mammogram cases, the next important consideration is to
choose features that can be used to distinguish mass and non-mass cases effectively
and with high detective rate. The image block was first processed by enhanced
segmentation procedure to extract the exact position where a mass may present. The
position of the segmented area was then a very useful reference for feature
calculation. Many features have been tested by other researchers for effectiveness,
and the results have been presented in their most recent papers. Based on literature
and medical book searching and reading, primarily we decided on ten features, among
them are eight texture features, shape feature and margin feature. Eight texture
features were calculated based spatial gray level dependence matrix, they are energy,
correlation, inertia, entropy, Inverse difference moment, sum average, sum entropy,
and difference entropy. Texture feature, in some scale, may be fairly good for reveal
fine texture differences in images, which human eyes have difficulty to see. They
were examined by several research groups for effectiveness in terms of improvement
of CAD performance.

Shape feature, such as compactness has been used to exclude non-mass cases
from the whole case population in previous study. By observation of hundreds
mammograms, shape feature is found to be essential for detecting a mass merging in
many mass-like normal breast tissues. Most of masses have relatively well-defined
round object in the center regardless to the speculated margin, however, the overall
shape of dense normal breast tissues, such as glandular elements and blood vessels
embedded, are often slender with no well-defined object in the center. The simplest
way of compactness calculation is to divide the area of the segmented area by the
perimeter of the contour. The method was found not very effective in those cases with
rippled contours since two segmented areas with same shape could have different
compactness if one of them has more rippled contour. The shape calculation method
that can eliminate the effect of rippled contour has been improved to replace the
simple compactness feature. The new method can automatically search the long axis
of the segmented area for initialization, do nonlinear fitting on the contour based on
Levenberg-Marquardt method, and eventually separate shapes in more accurate scale
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from very round to a line. Levenberg-Marquardt method works well in practical has
become the standard of nonlinear least-square routines for varying smoothly between
the extremes of the inverse-Hessian method and the steepest descent method.

Margin feature has been recognized as the only reliable specific feature used by
radiologists to decide whether a mass is malignant or benign, and also it is one of the
most important features that can help mass recognition from normal breast tissue. The
difficulty for effectively and precisely extracting margin feature that truly belongs to
the object becomes greater due to the overlapping of normal breast tissue on the
object region makes a smooth margin speculated, thus recognizing true spicules is a
very challenging task we are attempting.

3. Feature Database Explanation Using Visual Data Explanation and Mining Tool
3.1.1 Visual Data Explanation and Mining Tool Development

Although among many approaches of CAD research, some CAD systems are
sophisticated and claimed to have impressive performance, several fundamental
issues remain unsolved. For example, Receiver Operating Characteristics (ROC) can
provide an overall performance evaluation, but it may not help improve each
individual component in CAD system. Furthermore, since machine observer and
human observer may not detect the same set of masses, the black box nature of most
CAD systems may prevent a natural on-line integration of human and machine
intelligence and further upgrade of a CAD system. As a strategic move toward
improving CAD design and utility, we developed a visual data explanation and
mining tool. Our effort is to (1) provide a visual map of feature database prior to
knowledge encoding component so as to evaluate and improve the pre-processing and
signature extraction; (2) based on the resulting map to design an optimal classifier
best fitted to the particular database structure for knowledge encoding; and (3)
combine the map, the classifier output, raw image, and user interface to explore and
explain the whole decision making process by both radiologist and CAD system.

The revelation of growing volume of high dimensional and multi-modal data set
demands a data mining tool differing from conventional data visualization method,
which is capable of dealing with high dimensional data set. This motivates our
consideration of a hierarchical visualization paradigm involving hierarchical
statistical models and visualization space. Comprehensive studies on this issue
brought us the possibility of using several complementary visualization subspaces to
accomplish this complicated task. In this algorithm, dimensionality reduction and
cluster decomposition are two major components. The cluster decomposition permits
the use of relatively simple models for each local structure, offering great ease of
interpretation as well as many benefits of analytical and computational simplification.
On the other hand, dimensionality reduction allows visual explanation of high
dimensional data set and less computational demand. We proposed using standard
finite normal mixtures (SFNM) and hierarchical visualization spaces for as effective
data modeling and visualization. The strategy is that top level model and projection




should explain the whole structure of the data set, while lower level models explain
the local and internal structure between individual cluster, which may not be obvious
in the high level models. With many complementary mixture models and
visualization projections, each level will be relatively simple while the complete
hierarchy maintains overall flexibility yet still conveys considerable cluster
information. Based on the concept of combining finite mixture modeling and
principal component projection to guide cluster decomposition and dimensionality
reduction, the particular advantages of our method are: (1) at each level, a
probabilistic principle component analysis is performed to project the softly
partitioned data space down to a desired two-dimensional visualization space, leading
to an optimal dimensionality reduction that allows best separation and visualization of
local clusters; (2) learning from the data directly, minimax entropy principle is used
to select model structures and estimate its parameter values, where the soft
partitioning of the data set results in a standard finite normal mixture mode] with
minimum conditional bias and variance; (3) by performing principal component
analysis (PCA) and minimax entropy modeling alternatively, a complete hierarchy of
complementary projections and refined models can be generated automatically,
corresponding to a statistical description best fit to the data.

Top Level Visualization picture
¥
M .
3 ‘e v b £
. ER
« A o e ?"’ i
A A I5/ P A
« * L
S s F) +e
2 . . o« ate " KA ok 4 o l“.'
G ¢ :«( Ll %
. . . P 8‘;”’% s, ... 0:“ Rk
1 . o"’ 'L FEEE e POIIR I P
- * - R e
* Jest ¢ e LTty
el PSRN
Daateits®.
DD 222 i ISR
. %

Figure 1. User Interface of Visual Data Explanation and Mining Tool

User interaction with the algorithm is also an important issue. We have developed
a user-friendly graphical interface to facilitate the data visualization purpose, as
shown in Fig. 1, which allows the user to select initial centers of the data clusters. Our
experience has convincingly indicated a great reduction of both computational
complexity and local optimum likelihood. It should be pointed out that although the
final SFNM model can be estimated, the pathways of achieving cluster decomposition
may be multiple. For example, in this case the user has the flexibility to select only
two clusters in the second level and to further split the *‘right" cluster, thus to adopt a
three-level hierarchy. We believe that this user-driven nature of the current algorithm
is also highly appropriate for the visualization context.




3.1.2 Feature Database Explanation for Case and Feature Selection, and
Classifier Design Purpose

As the primary goal of the visual explanation and mining tool development, we
use it to reveal and explain feature database structure for CAD design purpose. We
try to make both hidden data patterns and neural network "black box" to be as
transparent as possible to users, such as radiologists and patients through interactive
visual explanation. The clinical purpose is to eliminate the false positive sites that
correspond to normal dense tissue with mass-like appearances through feature
discrimination. As described in Image Feature Extraction section, we adopted
mathematical feature extraction procedures to construct our feature database based on
all the suspicious mass sites localized by our enhanced segmentation method. We
then put efforts in exploring feature database structure using the visual data
explanation and mining tool in order to make the design processes of some
components in CAD more reasonable and efficient so as to improve CAD
performance. Cluster modeling gives case selection a reliable base that may help
select cases truly representing mass and non-mass categories. We believe that using
the cases selected carefully and reasonably in such way for classifier training may
further make classifier training more effective so as to improve classifier
performance.

Data exploration using our
visual use not only help case
selection, also is beneficial to
the evaluation and selection of
feature. By putting efforts in
observing tens of combinations
of feature, interim results show
that shape and some texture
features, such as energy,
correlation and  difference
entropy, are better
distinguishable between mass
and non-mass categories in term

of farther separation of data o P N

points and better defined data 2 ’s'»?““-“ . . tﬁ’wx&«
structure. Margin feature will * I

be tested when soon being Figure 2. Hierarchical view of nine
ready. In classifier selection features for mass and non-mass cases

and des1gn, feature database

structure is the major guldance we can depend on, and this Work has been started. A
hierarchical view of nine-feature database is show in Fig. 2 as an example of
revealing data structure. All these approaches have the only important goal that is to
improve CAD performance in a rational way so that we can explain how we design
each component of the CAD system, why such a integrated system works or does not




work, and further explain to radiologists to get feedback on the development, the
process is fairly transparent to users.

Key Research Accomplishments

e Improving research skill and enhancing fundamental engineering knowledge through
book and literature searching and reading under guidance of advisor and mentors.

e Collecting image cases, processing images by computing image features and constructing
high dimensional image feature database.

e Developing visual data explanation and mining tool and exploring feature database
structure for case feature selection and classifier design to make the CAD design
processing effective and reasonable.

Reportable Outcomes

e Y. Wang, Z, Wang, L. Luo, S-H. B. Lo and M. T. Freedman, "Computer-Based Decision
Support System: Visual Mapping of Featured Database in Computer-Aided Diagnosis",
Proc. Of SPIE, Image Processing, Vol. 1, No. 24, pp. 136-147, February 2000.

e Feature extraction programs.

e Visual data explanation and mining tool software.

Conclusions

In the second year of the project, we devoted efforts in developing effective feature
extraction methods, constructing feature database, developing visual explanation tool for
data mining and knowledge discovery, which is both statistically principled and visually
effective. This method, as illustrated by the well-planned simulations and pilot
applications in computer-aided diagnosis, can be very capable of revealing hidden
structure within data. It is important to emphasize that in relation to previous work, one
interesting consideration with the present algorithm is that the models are determined by
the information theoretic criteria, and this criterion can not only select the most
appropriate model structure but also allow a user-driven portfolio as a double check. This
approach promotes a self-consistent fitting of the whole tree, so that an automated
procedure for generating the hierarchy becomes reality. In addition, since we perform
model selection and parameter initialization firstly over the projection space, the
computational complexity is greatly reduced in compared to the maximum likelihood
estimation in full dimension. Other possible advantages include the determination of data
projection by maximum the separation of clusters, which in turn optimizes the other
crucial operations such as model selection and parameter initialization, and data
rendering algorithms which permit user or hypothesis driven nature of the data
projection. Using the visual explanation tool, we are trying to discover the feature
database structure for case and feature selection and also classifier design.
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This program is designated for calculating texture feature of
ROIs in mammograms.

- Inside and outside of segmented areas are both calculated.
- Run all images at once.

Zuyi Wang
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <memory.h>
#include <io.h>

#define GRAY_ LEVEL 256

void SGLD theda_d(int d, float *SGLD_ptr, float *SGLD_out_ptr) ;
void print SGLD matrix(int 4, float *SGLD_ptr);
void write output_file(double energy_tf, double correlation tf, double inertia tf, double e
ntropy tf, .
double inv diff moment_tf, double sum average_tf, double sum_entropy tf,double diff ent
ropy tf, double even tf);
void verify SGLD_matrix(float *SGLD_ptr);
double energy(int d, float *SGLD_ptr);
double correlation(int d, float *SGLD_ptr);
double inertia(int d, float *SGLD_ptr);
double entropy(int d, float *SGLD_ptr);
double inv_diff moment (int d, float *SGLD_ptr);
double sum_ average (int d, float *SGLD_ptr);
double sum_entropy (int d, float *SGLD_ptr);
double diff entropy(int d, float *SGLD_ptr);
double even(int d, float *SGLD_ptr);

char in filename[100] ;
char mor_filename[100];
char temp filename[100];
char output_ filename [100];

void main(int argc, char* argv(])

if ( argc !'= 2 )

{

printf ("No file in this directory!!!\n");
exit (1) ;

}

strcpy (in_filename, argv(l]l);
FILE *output_fptr;

int @ = 1; //Distance -- number of pixels

float *SGLD_ptr, *SGLD_out_ptr;

float SGLD matrix [GRAY_ LEVEL] [GRAY_LEVEL] = {0};
float SGLD matrix_out [GRAY_LEVEL] [GRAY_LEVEL] = {0};

1




—

.

double energy tf, correlation tf, inertia tf, entropy_ tf;
double inv_diff moment_tf, sum_average_ tf, sum entropy tf, diff entropy tf/*, even_ tf*/

double energy out_tf, correlation out_tf, inertia out_tf, entropy out_tf;
double inv diff moment out_tf, sum average_out_tf, sum_entropy out_tf, diff_entropy_ out
_tf/*, even out_tf*/;

SGLD_ptr = &SGLD_matrix[0] [0];
SGLD out_ptr = &SGLD_matrix out [0] [0];

SGLD_theda_d(d, SGLD_ptr, SGLD_out_ptr);

/* Calculate texture for segmented area */
energy tf = energy(d, SGLD_ptr);

correlation tf = correlation(d, SGLD_ptr);
inertia tf = inertia(d, SGLD_ptr) ;

entropy tf = entropy(d, SGLD_ptr);

inv_diff moment_tf = inv_diff moment (d, SGLD_ptr);
sum_average tf = sum_average(d, SGLD_ptr);
sum_entropy_tf = sum_entropy(d, SGLD_ptr);

diff entropy_tf = diff_entropy(d, SGLD_ptr);
//even tf = even(d, SGLD_ptr);

/* Calculate texture for outside of segmented area */
energy out_tf = energy(d, SGLD_out_ptr);

correlation out_tf = correlation(d, SGLD_out_ptr);
inertia_out_tf inertia(d, SGLD out_ptr);

entropy out_tf = entropy(d, SGLD_out_ptr);

inv_diff moment_out_tf = inv_diff_ moment (d, SGLD_out_ptr);
sum_average_out_tf = sum_average(d, SGLD_out_ptr);
sum_entropy_out_tf = sum_entropy(d, SGLD_out_ptr);

diff entropy out_tf = diff_entropy(d, SGLD_out_ptr);
//even out tf = even(d, SGLD_out_ptr);

//print SGLD matrix(2, SGLD_ptr);

printf ("%s\n%s %f\n%s %f\n%s %f\n%s %f\n%s $f\n%s %$f\n%s %f\n%s %f\n",
vTexture features computed for segmented area:",

"Energy = ", energy tf,

"Correlation =", correlation_ tf,

"Inertia = ", inertia tf,

"Entropy = ", entropy_ tf,

"Inverse difference moment = ", inv diff moment tf,
"Sum average = ", sum_average_tf,

"Sum entropy = ", sum_entropy tf,

"Difference entropy = ", diff entropy_ tf);

printf ("\n%s\n%s %$f\n%s %f\n%s %f\n%s %f\n%s $f\n%s %f\n%s %f\n%s 3f\n",
"Texture features computed for outside of segmented area:",

"Energy = ", energy_out_ tf,

"Correlation =", correlation_out_tf,

“Inertia = ", inertia_out_tf,

"Entropy = ", entropy out_tf,

"Inverse difference moment = ", inv_diff moment out tf,
"Sum average = ", sum_average_out_tf,

"Sum entropy = ", sum_entropy_out_tf,

"Difference entropy = ", diff_entropy_out_tf);




—

//verify SGLD matrix(SGLD_ptr);
/*write output file(energy_tf, correlation tf, inertia tf, entropy tf, inv_diff moment_

tf,
sum _average_tf, sum entropy tf,diff entropy tf, even tf);*/

/* Write results into output file out.txt */
strcpy (output_filename, "out.txt");

if ((output_fptr = fopen(output_filename, "a")) == NULL) {
printf ("Cannot open output file %s \n",output_filename) ;
exit (1) ;

fprintf (output_fptr, "\n%s\n", in_filename);
/* fprintf (output_fptr, "%s\n", mor_filename);
*/

/*fprintf (output_fptr, "%¥s\n%s %f\n%¥s $f\n%s %f\n%s %f\n%s %f\n%s %f\n%s %f\n%s $f\n%s
$f\n", .
wTexture features computed for segmented area:",
"Energy = ", energy_ tf,

"Correlation =", correlation tf,

"Inertia = ", inertia_ tf,

"Entropy = ", entropy tf,

"Inverse difference moment = ", inv_diff moment_tf,
"Sum average = ", sum_average_tf,

"Sum entropy = ", sum entropy_tf,

"Difference entropy = ", diff entropy tf,

"Even = ", even_tf);

fprintf (output_ fptr, "%$s\n%s %f\n%s $f\n%s %$f\n%s %f\n%¥s %f\n%s %f\n%s %f\n%s $f\n%s %f
\n",
"Texture features computed for outside of segmented area:",
"Energy = ", energy out_ tf,
"Correlation =", correlation_out_tf,
"Inertia = ", inertia out_tf,
"Entropy = ", entropy out_tf,
"Inverse difference moment = ", inv_diff moment_out_tf,
"Sum average = ", sum_average out_tf,
"Sum entropy = ", sum_entropy_out_tf,
"Difference entropy = ", diff entropy out_tf,
"Even = ", even _out_tf);
*/
/*
Write result of inside and outside of mass in two separate files --- run program twice
inside result
*/
fprintf (output_fptr, 15 f\nsF\nsf\nsf\ns£\n¥f\n%f\n%f\n",
energy tf, correlation tf, inertia tf, entropy_ tf,
inv_diff moment_tf, sum_average_ tf, sum_entropy tf,diff_entropy_tf);

//outside result
/*fprintf (output_f£fptr, ", f\n$f\ntf\n¥£\n%f\nsf\n%f\n%f\n",
energy out tf, correlation_out_tf, inertia out_tf, entropy_out_tf,
inv_diff moment_out_tf, sum_average_out_tf, sum_entropy_out_tf,diff entropy_ out
_tf);
*/

fclose(output_fptr);




void SGLD theda_d(int d, float *SGLD_ptr, float *SGLD_out_ptr)

{

/7
/!

int i, j, temp i, temp_j, gray a, gray_b, gray_a_ mor, gray_b_mor;
int a, b, theda, total pix pair = 0, total pix_pair_out = 0;

int fhandle, fhandle mor;

int hn, hn mor, ROI_X, ROI_Y, ROI_X MOR, ROI_Y_ MOR;

long ROI_size, ROI_size mor;
unsigned short header[128], header mor[128];
unsigned char *img buffer, *ROI, *img_buffer mor, *ROI_MOR;

FILE *fptr;
FILE *fptr_mor;

Read filename
printf ("Please enter ROI filename: ");
gets(in_filename) ;

/*

Open ROI file

*/

if ((fptr = fopen(in filename,"rb")) == NULL) {
printf ("Cannot open %s \n",in_ filename);
exit (0) ;

}

else {

printf ("Original image file is $s\n", in_filename) ;

}

//Check if file extension is .mor (false mass) or .seg (true mass)
sprintf (temp_filename, "%s.mor", in_filename) ;

if ((fptr _mor = fopen(temp_filename, "rb"})) == NULL) {
sprintf (mor_filename, "%s.seg", in_filename);
if ((fptr mor = fopen(mor_filename,"rb")) == NULL) {
printf ("Segmented image of %s not found\n",in_ filename) ;
exit (0) ;
}
}
else {
sprintf (mor_ filename, "%s.mor", in filename) ;

printf ("Segmented image file is %s\n", mor_filename);

/*

Extract ROI_Y and ROI_X from header of original image,
ROI_Y(# of rows) is on the position #18 word

ROI X (# of columns) on #19 word

*/

hn = fread(header, sizeof (unsigned short), 128, fptr);
//Get file handle and file length

fhandle = fileno(fptr);




/*

*/

ROI size = _filelength(fhandle);

//Check the format of the header --- ZUBO format
if ((header[17] * header[18] + 256) != ROI_size) {
ROI_X = ((header([17] & Ox00ff) << 8) | ((header([17] & 0xff00) >> 8);
ROI_Y = ((header(18] & O0x00ff) << 8) | ((header([18] & 0xff00) >> 8);
}
else {
ROI_X = header([17];

ROI_Y = header[18];

}

//Check the format of the header --- TIFF format
if ((header([16] * header[22] + 256) != ROI_size)
ROI X =

ROI_Y

i

}

else {
ROI X header[16];
ROI_Y = header[22];

i

{

((header[16] & 0x00ff) << 8) | ((header([16] & 0xff00) >> 8);
((header [22] & Ox00ff) << 8) | ((header[22] & 0x£f00) >> 8);

//printf ("The number of items read from header is %4 \n", hn);
printf ("The size of the ROI image is %d %d \n", ROI_Y, ROI_X);

ROI = (unsigned char *) malloc(sizeof (unsigned char) * ROI_X * ROI_Y);
img buffer = (unsigned char *) malloc(sizeof (unsigned char) * ROI_X);
/*

Read in original ROI image

*/

for (i = 0; i < ROI_Y; i++) {

fread(img buffer, sizeof (unsigned char), ROI_X, fptr);

for (j = 0;j < ROI_X;j++) {

*(ROI + i * ROI_X + j) = *(img buffer + j);

}
}

/*

Extract ROI_Y and ROI_X from header of segmented file,

ROI_Y(# of rows) is on the position #18 word
ROI X (# of columns) on #19 word
*/

hn mor = fread(header_mor, sizeof (unsigned short), 128, fptr mor);

//Get file handle and file length
fhandle mor = _fileno(fptr_mor);
ROI_size mor = _filelength(fhandle_mor) ;

//Check the format of the header

if ((header mor[17] * header mor[18] + 256) != ROI_size mor) {
ROI_X MOR = ((header_mor[17] & O0x00ff) << 8) | ((header_mor([17] & 0xff00) >> 8);
ROI_Y MOR = ((header mor[18] & 0x00ff) << 8) | ((header mor[18] & 0xf£00) >> 8);
}
else {
ROI_X_MOR = header_mor[17];
ROI_Y MOR = header_mor[18];




//printf ("The number of items read from header is %d \n", hn mor);
printf ("The size of the segmented ROI image is %d %d \n", ROI_Y MOR, ROI_X_ MOR);

if ((ROI_X != ROI_X MOR) | (ROI_Y != ROI_Y MOR)) ({
printf ("Original and segmented files do NOT match!\n") ;
exit (0) ;

ROI_MOR = (unsigned char *) malloc (sizeof (unsigned char) * ROI_X_MOR * ROI_Y MOR);

img buffer mor = (unsigned char *) malloc (sizeof (unsigned char) * ROI_X MOR) ;
/*

Read in segmented ROI image

*/

for (i = 0; i < ROI_Y MOR; i++) {
fread(img buffer mor, sizeof (unsigned char), ROI_X_ MOR, fptr mor) ;
for (j = 0; § < ROI_X_MOR; j++) {
*(ROI_MOR + i * ROI_X MOR + j) = *(img_buffer mor + j);
}

}

fclose (fptr);
fclose(fptr mor) ;

/* Scan image */

for (theda = 0; theda <= 135; theda += 45) {
switch (theda) ({
case O:
a = 0;
b = d4d;
break;
case 45:
a = -4d;
b = 4;
break;
case 90:
a = -d;
b =0;
break;
case 135:
a = -d;
b = -d;
break;
}
for (i = 0; i < ROL_Y; i++) {
for (j = 0; j < ROI_X; j++) {
/*
Scan the image and search for any pixel pairs satisfied the
the directional angle theda and distance d. The elements in
SGLD matrix are the numbers of pixel pairs found.
Total pix pair is the total number of pixel pairs.
*/
temp i = 1 + a;
temp j = j + b; :
if ((0 <= temp i) && (temp_i < ROI_Y) && (0 <= temp_j) && (temp_j < ROI_X))
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}

void pri
{

int

prin
for

}

void wri

gray a = *(ROI + i * ROI_X + j); // gray level of pixel (i,j) in origin

gray b = *(ROI + temp_i * ROI_X + temp_3j);
gray a_mor = *(ROI_MOR + i * ROI_X MOR + j);//gray level in segmented i

gray b mor = *(ROI_MOR + temp_i * ROI_X_MOR + temp j);

//Calculate the segmented area only

if ((gray a mor == 0) & (gray_b_mor == 0))

//gray_i and gray_j (range from 0 - 255) are the actual row and column

* (SGLD_ptr + GRAY_LEVEL * gray_a + gray_b) += 1;

total_pix pair += 1;

}

//Calculate outside of segmented area only

if ((gray a mor != 0) & (gray b _mor != 0)) {

//gray_ i and gray j (range from 0 - 255) are the actual row and column

* (SGLD_out_ptr + GRAY_LEVEL * gray_a + gray b) += 1;
total pix pair_out += 1;

}

}
/*

Calculate the probabilities of each pixel pair found for segmented area.
*/
for (i = 0; i < GRAY_LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++) {
* (SGLD_ptr + GRAY LEVEL * i + j) /= total_pix_pair;
}

}
/*
Calculate the probabilities of each pixel pair found for outside of segmented area.
*/
for (i = 0; i < GRAY_LEVEL; i++) {

for (j = 0; j < GRAY_LEVEL; j++) {

* (SGLD_out_ptr + GRAY_LEVEL * i + j) /= total_pix pair_ out;
}

nt_SGLD_matrix(int 4, float *SGLD_ptr)
i, 3
tf("\n%s %d\n", "Spatial Gray Level Dependence Matrix, with d = ", d4);
(i = 0; 1 < GRAY LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) {
printf ("$f", *(SGLD_ptr + GRAY_LEVEL * i + j));
}

printf ("\n") ;

te output_file(double energy tf, double correlation_tf, double inertia_tf, double e
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ntropy_ tf,

double inv_diff moment_tf, double sum average_tf, double sum_entropy_tf,double diff_ent
ropy tf, double even_ tf)
{

char output filename [20];

FILE *output_fptr;

// printf ("Enter output filename\n");
// gets(out filename) ;

strcpy (output filename, "out.txt");

if ((output fptr = fopen(output_filename, "a")) == NULL) {
printf ("Cannot open output file %s \n",output_filename);
exit (1) ;

}

/*fprintf (output fptr, "\n%s\n", in_filename) ;
fprintf (output_fptr, "$s\n", mor_filename);

fprintf (output_ fptr, "%$s\n%s %f\n%s %f\n%s $f\n%s %f\n%s %f\n%s %f\n%s %¥f\n%s $f\n%s 3%f
\n",
"Texture features computed:",
"Energy = ", energy tf,
nCorrelation =", correlation_tf,
"Inertia = ", inertia tf,
"Entropy = ", entropy tf,
vInverse difference moment = ", inv_diff moment_ tf,
"Sum average = ", sum average_tf,
"Sum entropy = ", sum_entropy tf,
"Difference entropy = ", diff_entropy_tf,
"Even = ", even_ tf);*/
fprintf (output_ fptr, 15 F\n$f\nsf\nsf\nsf\nf\n%f\nsf\n%f\n",
energy tf, correlation tf, inertia tf, entropy tf,
inv_diff moment_tf, sum average tf, sum_entropy tf,diff_ entropy tf, even tf);

fclose (output_fptr) ;

void verify SGLD_matrix(float *SGLD_ptr)

{

int i, j, n = 1;

//Extract non-zero elements in SGLD matirx
printf("i, j and non-zero SGLD element \n");
for (i = 0; i < GRAY LEVEL; i++)

for (j = 0; j < GRAY LEVEL; j++) {
if (*(SGLD ptr + GRAY LEVEL * i + j) != 0) {
printf ("sd %4 %4 %f\n", n, i, j, *(SGLD_ptr + GRAY LEVEL * i + j));
n++;




double energy(int d, float *SGLD_ptr)

{

//

}

{

int i, j;
double energy feature = 0;

/*
Energy feature is the sum of square of each element of SGLD matrix.

*/
for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) {
energy feature += pow(* (SGLD_ptr + GRAY_ LEVEL * i+ 3), 2);
}
}

printf ("\n%s %d %s %f\n", "The energy, with d = ", d, ", is ", energy feature);

return energy feature;

double correlation(int d, float *SGLD_ptr)

int i, 3;

/*

mean px is sum(i) of (i * sum(j) of probability theda_d(i,j)).

mean py is sum(j) of (j * sum(i) of probability theda d(i,j)).

variance px is sum(i) of ((i - mean px)”*2 * sum(j) of probability_theda_d(i,j)).
variance py is sum(j) of ((j - mean px)”*2 * sum(i) of probability theda_d(i,j)).

*/

double mean px = 0, variance_px = 0, mean_py = 0, variance py = 0;
/*

marg prob_i is sum(j) of probability theda d(i,j).

marg_prob_j is sum(i) of probability theda_d(i,j).

*/

double marg_prob_i [GRAY LEVEL] = {0}, marg_prob_j [GRAY_LEVEL] = {0};

double correlation feature = 0;

for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++){
marg prob i[i] += *(SGLD_ptr + GRAY_LEVEL * i + jJ);
}

mean_px += i * marg_prob_i[il;

}

for (j = 0; j < GRAY_LEVEL; j++) {
for (i = 0; i < GRAY_LEVEL; i++){
marg _prob_j[jl += *(SGLD_ptr + GRAY_LEVEL * i + j);
}

mean py += j * marg_prob_j[jl;

}

for (i = 0; i < GRAY LEVEL; i++) {
variance px += (i - mean px) * (i - mean _px) * marg prob_il[il;

}

for (j = 0; j < GRAY_LEVEL; Jj++) {
variance py += (j - mean_py) * (j - mean_py) * marg_prob_j (91
}

/*




F—*
Correlation feature calculation
*/
for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) { -
correlation feature += (i - mean px) * (j - mean_py) * (*(SGLD_ptr + GRAY LEVEL

* 1+ 3));
}
correlation_feature = correlation feature / sqrt(variance px * variance_py) ;
// printf("\n%s %d %s %f\n", "The correlation, with d = *, 4, ", is ", correlation_feature

return correlation_feature;

}
double inertia(int d, float *SGLD_ptr)
{
int i, J;
double inertia_ feature = 0;
for (i = 0; i < GRAY_LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++) {
inertia feature += (i - j) * (i - j) * (*(SGLD_ptr + GRAY LEVEL * i+ 3));
}
}
// printf("\n%s %d %s %f\n", "The inertia, withd =", d4, ", is ", inertia feature);

return inertia_feature;

}

double entropy(int d, float *SGLD_ptr)

{
int i, j: .
double entropy feature = 0;
float 1lgv;
for (i = 0; i < GRAY_LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++) {
if (*(SGLD ptr + GRAY _LEVEL * i + j) != 0){
1gv = (float) (log(* (SGLD_ptr + GRAY_LEVEL * i + j))} / 1log(2.0));
entropy feature += (-1) * (*(SGLD_ptr + GRAY_LEVEL * i+ j)) * lgv;
}
}
}
//printf ("\n%s %d %s %f\n", "The entropy, withd= ", d, ", is ", entropy feature);
return entropy_feature;
}

double inv_diff moment (int d, float *SGLD_ptr)
{

int i, j;

double inv_diff moment_feature = 0;

for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++) {
inv_diff moment_feature += *(SGLD_ptr + GRAY LEVEL * i+3) / (1.0+ (L -3) *

(i - 3)):
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//printf ("\n%s %4 %s %f\n", "The inverse difference moment, withd=1",d, ", is ", inv
_diff moment_feature);

return inv_diff moment_feature;
}

double sum average(int d, float *SGLD_ptr)
{
int i, j, k;
/*
prob _k is sum of elements in SGLD matrix with i+j=k
*/

double prob k, sum average_feature = 0;

for (k = 0; k <= (2 * GRAY_LEVEL - 2); k++) {
prob k = 0;
for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) {
if ((1i + j) == k)
prob k += *(SGLD ptr + GRAY_LEVEL * i + J);
}
}
sum average_ feature += k * prob k;
}
//printf ("\n%s %d %s %f\n", "The sum average, withd =", 4, ", is ", sum_average_featu
re);
return sum_average feature;
}

double sum entropy(int d, float *SGLD_ptr)

{
int i, j, k;
double prob k = 0, sum_entropy_ feature = 0;
for (k = 0; k < 2 * GRAY LEVEL - 2; k++) {
prob k = 0;
for (i = 0; i < GRAY_LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) {
if (i + j == k)
prob_k += *(SGLD_ptr + GRAY_LEVEL * i + j);
}
}
if (prob_k != 0)
sum_entropy feature += (-1) * prob_k * (float) (log(prob_k) / log(2.0));
}
//printf ("\n%s %d %s %f\n", "The sum entropy, withd = ", 4, ", is ", sum_entropy_featu
re) ;
return sum_entropy feature;
}

double diff entropy(int 4, float *SGLD_ptr)

{
int i, j., k;
double prob k = 0, diff_ entropy feature = 0;
for (k = 0; k < GRAY LEVEL - 2; k++) {
prob k =

0;
for (i = 0; i < GRAY_LEVEL; i++) {
for (j = 0; j < GRAY_LEVEL; j++) {
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k)

if (abs(i - j) ==
= *(SGLD_ptr + GRAY_LEVEL * i + J);

prob_k +
}
}
if (prob k != 0)
diff entropy feature += -prob_k * (float) (log{prob k) / log(2.0));
}
//printf ("\n%s %d %s %f\n", "The difference entropy, withd =", d, ", is ", diff entro

py_feature) ;
return diff entropy_feature;

}
double even(int d, float *SGLD_ptr)
{
int i, j;
double even_ feature = 0;
for (i = 0; i < GRAY LEVEL; i++) {
for (j = 0; j < GRAY LEVEL; j++) {
if ((abs(i - j) == 0))
even feature += *(SGLD_ptr + GRAY_LEVEL * i + j);
}
}
//printf ("\n%s %d %s %f\n", "The even, withd =", d, ", is ", even_feature);
return even_feature;
}
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/* This program is designated to compute shape feature of segmented mass
area.

Zuyi Wang
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <memory.h>
#include <io.h>
#include <iostream.h>
#include "nr.h"
#include "nrutil.h"

char in filename [100];
char output_ filename [100];

void contour fold(double *contour X, double *contour_ Y, int ROI_X, int ROI_Y,
int perimeter, double *contour X_fold, double *contour_Y_fold,
int fold line point_num, double *a, double *Db);

double contour_ fit (double *a, double *b, double *contour X _fold, double *contour_Y_ fold,
int fold line point_num) ;

void main(int argc, char* argvl(])
{
if ( argc t= 2 )
{
printf ("No file in this directory!!!\n");
exit (1) ;

}

int i, j, k, pix_in _seg = 0, perimeter = 0;
int fhandle;

int hn, ROI_X, ROI_Y;

double *contour_ X, *contour Y, eccentricity;

double ROI size, compactness_sf;
unsigned char *img_buffer, *ROI;
unsigned short header[128];

FILE *fptr;

FILE *output_fptr;

strcpy (in_filename, argvI[l]);

/*

Open ROI file

*/

if ((fptr = fopen(in_filename, "rb")) == NULL) {
printf ("Cannot open %s \n",in_filename);
exit (0);

}

else {

printf ("Segmented image file is %s\n", in filename);

1




1 }

hn = fread(header, sizeof (unsigned short), 128, fptr);

//Check file handle and file length
fhandle = fileno(fptr);
ROI_size = _filelength(fhandle);

//Check the format of the header --- ZUBO format
if ((header[17] * header[18] + 256) != ROI_size) {
ROI_Y = ((header([17] & 0x00ff) << 8) | ((header[17] & 0xf£f00) >> 8);
ROI X = ((header([18] & 0x00ff) << 8) | ((header[18] & 0xff00) >> 8);
}
else {

]

ROI_Y = header[17];
ROI_X = header[18];

printf ("The size of the ROI image is %d %d \n", ROI_Y, ROI _X);

ROI = (unsigned char *) malloc(sizeof (unsigned char) * ROI_X * ROI_Y);
img buffer = (unsigned char ¥*) malloc (sizeof (unsigned char) * ROI_X);

//Read in original ROI image
for (i = 0; i < ROI_Y; i++) {
fread (img buffer, sizeof (unsigned char), ROI_X, fptr);
for (j = 0;3 < ROI_X;j++) {
*(ROI + i * ROI_X + j) = *(img_buffer + j);
}
}

for (i = 0; i < ROI_Y; i++) {
for (j = 0; j < ROI_X; j++) {

if (*(ROI + i * ROI_X + j) == 0) {
pix_in_seg ++;
if ((*(ROI + (i - 1) * ROI_X + j) != 0) | (*(ROI + (i + 1) * ROI_X + j) !=
0) | (*(ROI + i * ROI_X + (j - 1)) !=0) | (*(ROI + i * ROI_X + (j + 1)) != 0))

perimeter ++;

}

(int *) malloc(sizeof (int) * perimeter);
(int *) malloc(sizeof (int) * perimeter);

contour X
contour_Y

1

//Extract contour of segmented area

k = 0;
for (i = 0; i < ROI_Y; i++) {
for (j = 0; j < ROI_X; j++) {
if ((*(ROI + (i - 1) * ROI_X + j) != 0) | (*(ROI + (i + 1) * ROI_X + j) != 0) |
(*(ROI + i * ROIX + (j - 1)) != 0) | (*(ROI + i * ROI X + (J + 1)) != 0)) {
* (contour Y + k) = 1i;
* (contour X + k) = j;

k++;




//Name output file
strcpy (output_filename, "out_shape.txt");

if ((output fptr = fopen(output_filename, na")) == NULL) ({
printf ("Cannot open output file %s \n",output_filename) ;
exit (1) ;

//Fit straight line
contour_fold(*contour_ Y, *contour X, ROI_X, ROI_Y, perimeter, *contour_Y_fold,
*contour X fold, fold_line_point_num, *a, *b);

//Fit curve
contour fit(*a, *b, *contour_X_fold, *contour_Y_fold, fold line_ point_num) ;

//Print results

printf ("\n%s%f%s%f%s%f", "eccentricity=", eccentricity, "ry=", parameter[2], "rx=", par
ameter[3]) ;
printf ("\n%s%f", "chi square =", chisq);

// Arrange contour for curve fitting
void contour fold(double *contour_Y, double *contour_X, int ROI_X, int ROI_Y, int perimeter
, double *contour Y fold, double *contour X fold, int fold line point_num, double *a, doubl
e *Db)
{

int i, j, k, n;

int mwt = 0;

double *fold line x, *fold line y, *fold line_temp, fold line_point = 0.0;

double *sig, chi2, old chi2, *g, *siga, *sigb;

double cos_a, sin_a;

double *fold line x new, *fold_ line_y_new;

double contour point_temp, *contour Y new, *contour X new;

fold line x = (double *) malloc(sizeof (double) * ROI_Y);
fold line y (double *) malloc(sizeof (double) * ROI_Y);

fold line point_num = 0;

for (i = 0; i < ROI_Y; i++) {
n = 0; // # of contour points with same y
fold line_point = 0;
for (k = 0; k < perimeter; k++) {

if (*(contour Y + k) = i) {
fold_line_point += *(Contour_x + k) ;
n++;




if (fold line point t= 0) {
* (fold line x + fold line_point_num) = fold line point / n;
fold line point_num++;
}
}
for (i = 0; i < ROI_Y; i++) {
if (* (fold line temp + i) != 0) {
* (fold line x + fold line_point_num) = *(fold line_ temp + i);
* (fold line y + fold_line_point_num) = i;
fold line_point_num++;
}
}
sig = (double *) malloc(sizeof (double) * fold_line_point_num) ;
contour_X_fold = (double *) malloc(sizeof (double) * fold line point_num) ;

chi2 = 0;
do {

0ld_chi2 = chi2;
fit (fold line y, fold_line_x, fold_line point_num, sig, mwt, a, b, siga, sigb, &chi

2, q);

}

while (abs (*chi2 - old_chi2) < 0.1);
printf ("\n%s%f %s%f %s%f\n", "a=", *a, wph=",6 *b, "chi2=", chi2);

/*calculate cos(angle) and sin(angle) from b (tan(angle))

cos=1/ (sqgrt (tan®2+1)), sin=tan/(sqrt(tan®2+1))
*/

cos_a = 1 / (sgrt((*b) * (*b) + 1));

sin_a = (*b) / (sqgrt((*b) * (*b) + 1));

/*coordinate rotation
y_new = y*cos_a+x*sin_a
X _new = X*cos_a-y*sin_a

*/

for (i = 0; i < perimeter; i++) {
* (contour Y new + i) = *(contour_Y + i) * cos_a + *(contour X + i) * sin_a;
* (contour X new + i) * (contour X + i) * cos_a - *(contour Y + i) * sin_a;

for (i = 0; i < fold line point_num; i++) {
* (contour_Y_fold + i) = *(fold_line y + i) * cos_a + * (fold line x + i) * sin_a;
}

/*Calculate distances from the points on the contour
on both sides of the fold line
*/
for (i = 0; i < fold line point_num; i++) {
contour_point_temp = *(contour Y new + 1i);
k = 0;
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* (contour X_fold + i)= *(contour X new + 1i);

for (j = 0; j < perimeter; j++) {
if (*(contour Y new + j) == contour_point_temp) {
* (contour X fold + i) += *(contour_X new + J);
k++;

}

* (contour X fold + i) /= (k + 1);

}

//Define function, and derivations of each parameter
void f ellipse(double y, double parameter [], double *x, double dx dparameter[], int num par

ameter)
{.
double arg;
arg = sqrt(1 - (y - parameter[0]) * (y - parameter[0]) / (parameter[2] * parameter[2]))
dx_dparameter[0] = parameter[3] * arg * (y - parameter[0]) / (parameter[2] * parameter|
21);

i

dx_dparameter [1] 1;

dx_dparameter [2] = parameter[3] *arg * (y - parameter [0]) * (y - parameter[0]) / (param
eter[2] * parameter [2] *parameter[2]);

dx_dparameter[3] = arg;

double contour fit (double *a, double *b, double *contour_X_fold, double *contour_Y fold, in
t fold line_point_num)

{ .

int i, j, k, *iparameter, iter;
long num parameter = 4;

double center x, center_y; //center of ellipse
double ry, rx, eccentricity;
double parameter(4], *sig, chisqg, old_chisq, alamda, **covar, **alpha;

center X = *a;
center y = (*(contour_Y_fold) + *(contour_ Y fold + fold line_point_num - 1)) / 2;

(* (contour Y fold + fold_line point_num - 1) - *(contour_Y_fold)) / 2;
* (conyour X_fold + (fold_line_point_num + 1) / 2)

]

ry
rx

iparameter = ivector(l, num_parameter) ;

sig = vector(l, fold_ line_point_num) ;

covar = matrix(1l, num_parameter, 1, num_parameter);
alpha = matrix(l, num parameter, 1, num_parameter);

]

//Initialize iparameters to 1 for all parameter to be fitted
for (i=1; i <= num parameter; i++) iparameter([i] = 1;

//Initialize parameters
parameter [0] = center_ y;
parameter [1] = center_x;




.

parameter[2] = ry;
parameter [3] = rx;
alamda = -1;

chisg = 0;

do {

old _chisg = chisq;
mrgmin (contour Y fold, contour X_fold, sig, fold_line point_num, parameter, iparame

ter,
num parameter, covar, alpha, &chisq, f_ellipse, &alamda) ;

}

while (abs(old chisqg - chisq) < 0.1);
alamda =0;
mrqmin (contour_ Y fold, contour X_fold, sig, fold line point_num, parameter, iparameter,

num_parameter, covar, alpha, &chisqg, f_ellipse, &alamda) ;

if (parameter[2] >= parameter([3]) {

eccentricity = sqrt(l - (parameter[3] / parameter([2]) * (parameter (3] / parameter {2
1))
}
else {
eccentricity = sqrt(l - (parameter[2] / parameter[3]) * (parameter [2] / parameter[3

}
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/* note #undef's at end of file */
#define NRANSI
#include "nrutil.h"

void mrgmin(double x[], double y[l, double sigl[], int ndata, double a[l, int iall,
int ma, double **covar, double **alpha, double *chisqg,
void (*funcs) (double, double [], double *, double [], int), double *alamda)

void covsrt (double **covar, int ma, int ia[]l, int mfit);

void gaussj (double **a, int n, double **b, int m) ;

void mrqcof (double x[], double y[], double sig[], int ndata, double all,
int iaf[], int ma, double **alpha, double betall, double *chisq,
void (*funcs) (double, double [], double *, double [], int));

int j,k,1;

static int mfit;

static double ochisqg, *atry, *beta, *da, **oneda;

if (*alamda < 0.0) {
atry=vector(l,ma) ;
beta=vector (1,ma);
da=vector(1,ma) ;
for (mfit=0,j=1;j<=ma;j++)

if (ialj]) mfit++;

oneda=matrix(1i,mfit,1,1);
*alamda=0.001;
mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,chisq,funcs);
ochisg=(*chisq) ;
for (j=1;j<=ma;j++) atryljl=aljl;

for (j=1;j<=mfit;j++) {
for (k=1;k<=mfit;k++) covar[jl [k]l=alphaljl [k];
covar[jl [jl=alphalj] [j1*(1.0+(*alamda));
oneda [j] [1]=betalj];
}
gaussj (covar,mfit,oneda, 1) ;
for (j=1;j<=mfit;j++) daljl=onedalj] [1];
if (*alamda == 0.0) {
covsrt (covar,ma,ia,mfit) ;
covsrt (alpha,ma,ia,mfit);
free matrix(oneda,l,mfit,1,1);
free vector(da,1l,ma);
free vector (beta,l,ma);
free vector(atry,l,ma);
return;
}
for (§=0,1=1;l<=ma;l++)
if (ialll) atrylll=afll+dal++3j1;
mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,chisq,funcs);
if (*chisq < ochisq)
*glamda *= 0.1;
ochisg= (*chisqg);
for (j=1;j<=mfit;j++) {
for (k=1;k<=mfit;k++) alphalj] [k]l=covar(j] [kl;
betaljl=daljl;
}
for (l1=1;l<=ma;l++) alll=atry[l];
} else {
*alamda *= 10.0;
*chisg=ochisq;




#undef NRANSI
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#include <math.h>
#define NRANSI
#include "nrutil.h"

void fit (double x[], double y[], int ndata, double sig[], int mwt, double *a,
double *b, double *siga, double *sigb, double *chi2, double *q)
{
double gammg(double a, double X);
int i;
double wt,t,sxoss,sx=0.0,s8y=0.0,8t2=0.0,ss,sigdat;

*p=0.0;
if (mwt)
s8=0.0;
for (i=1;i<=ndata;i++) {
wt=1.0/SQR{sig[i]);
sSs += Wt;
sx += x[1]*wt;
sy += yl[il*wt;
}
} else {
for (i=1;i<=ndata;i++) {
sx += x[1i];

sy += ylil;
}
ss=ndata;
}
sXoss=sx/ss;
if (mwt) {
for (i=1;i<=ndata;i++) {
t=(x[i] -sxoss) /sigli];
st2 += t*t;
*b += t*y[il/siglil;
} else {
for (i=1;i<=ndata;i++) {
t=x[1] -sxoss;
st2 += t*t;
*b += t*y[i];
}
}
*b /= st2;

*a=(sy-sx* (*b))/ss;
*siga=sqrt ( (1.0+sx*sx/ (ss*st2))/ss);
*gigb=sqrt (1.0/st2);
*chi2=0.0;
*q=1.0;
if (mwt == 0)
for (i=1;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(*b)*x[i])};
sigdat=sqrt ((*chi2)/ (ndata-2));
*giga *= sigdat;
*gigb *= sigdat;
} else {
for (i=1;i<=ndata;i++)
*chi2 += SQR((y[i]-(*a)-(*b)*x[i])/siglil);
if (ndatas2) *g=gammg(0.5* (ndata-2),0.5*%(*chi2));
}
}

#undef NRANSI
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% VE_RUN Hierarchical interactive data visualization

: ‘

% VE_RUN(DATA, VTYPE, itr, LABELS)

%

% DATA N x d data matrix

%

% - VTYPE(VL) The visualisation type:

% X:

% 0 = Plain

% 1 = with LABELS

% 2 = no labels, but ‘depth colouring'

% 01X = X is as 0-2, but with a white background
% 1XX =XX is as 1X, but with REP # displayed
%

% LABELS N x 1 vector of integer class labels

% (optional). Note that these are never used
% in determining the model, but can be useful
% when included in the plots.

%

% See also: VE_SHOW

%

function ve run(D,vl,itr, labels)
$ Declare global variables for storing the hierarchical tree structure.
3

global Structure;

global SaveW;

global SaveP;

global SavePROP;

global SaveMU;

global vll;

global vl12;

global vl13;

global D rep;

global finishedAll;

finishedAll=0;
% Parameters
CENTRE_FSIZE = 14;
vll=vl;
if v11>99
v13=1;
vll=v11-100;
else
v13=0;
end
if v11>9
- vl2=1;
vll=v1l1-10;
else
v12=0;
end

% Set default black background

if vl2==
whitebg (0, 'w');
else
whitebg (0, 'k");
end

if nargin<3 | nargin>4
error('ve run requires 3 (or optionally 4) arguments.')
end

% Fix the latent dimensionality at 2 for visualization
%
q=2;
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Structure = {0 0];

[n pl=size(D);
if nargin==
labels=[];
if rem(vl,2)
fprintf ('! Warning: VLevel %d requested, but no labels supplied.\n',vl)
vll = vl1l-1;
vli=vl-1;
fprintf('! Attention:Using VLevel %d instead.\n',6vl)
end
else
[nlabel plabel]=size(labels);
if nlabel ~=n

fprintf('! Warning: row# of labels is different from Data.\n')
vll = v1l-1;
vl=vl-1;
fprintf('! Attention:Using VLevel %d instead.\n',vl)
end )
end
D_rep=zeros(n,1l); % corresponding to D, rep # stored in it
if v13==
D rep=labels;
if vll==
111= labels(1l);
112= 0;
for i = 1:n
if labels(i)~=111
112=1;
lll=labels(i):
else
112=112+1;
end
D rep(i)=112;
end
else
for i = 1:n
D rep(i)=
end
end
end

$ Centre the data

%

mu = mean(D); % first dimension

D = D-ones{n,l)*mu; % the mean should be zero after transform
%

% Close windows to clear the screen, but leave figure(l) intact
g -

figs = get (0, 'Children');
close(figs(figs~=1))

% Top level latent variable projection

% W:sorted top 2 eigen vectors, U:sorted total eigen vector matrix
% P:averaged eigen value from g+l to p. [n pl=size(D). q:2

[W P U] = ve_zero(D,n,p,q);

$ Plot the projection

% fig2-MDL, figl-reserved for center selection of all level
fig=3;

$function ve mvis(level,D,W,MU,R,n,p,q, labels, Zjk)
$function ve vis_t (D,W,MU,R,n,p,q,LABELS, Zjk, BLOB_SIZE)
$MU:center selected, R:UK, D:n X p matric original data, gq:2
figure(fiqg)

clf
ve_mvis(l,D,W,zeros(l,p),ones(n,l),n,p,q,labels,ones(n,l));
title('Top Level Visualization')

set (gcf, 'MenuBar', 'None')
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hold on

%

$function [ kO, MU t, w0 ] =

% ve mselect(level, fig, D, W, MU, R, n, p, q, labels, Zjk):;

[kO,MU _t,w0,2jk _t)}=ve mselect(l,fig,D,W, zeros(1l,p),ones(n,1),n,p,q,labels,ones(n,1));

% The latent cluster centres have been selected, so transform them into the
% data space, and generate the mixture model.
% .
fprintf('\n! OK. Generating Top Level Mixture Model.\n');
if finishedAll

return;
end

fig=fig+l;

level=2;

vkO=ones(1,k0); % every point selected is belong to picture 1l(top level)
% function newfig = ve_sub new(uc, fig,level,D,MU, q, labels, w0, Z2jk_t)
ve_sub_new(vk0,fig,level,D,MU_t, q,labels,w0,ones(n,1),itr);

%

% Finally, save all the parameters in the requisite file.

%

$if SaveFlag

% eval(['save ' file_ ' SaveW SaveP SavePROP SaveMU Structure'l);

$end
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$model select

$MDL = -log{(Lml) + 0.5*Ka*logN

$Ka = 3*K - 1;

$K0 is the optimal number of clusters

$X is the input data

$MU is centers that user selected in upper level
22k is the k column of Zjk of upper cluster
$W is the Wk of each cluster in upper level
$D, n x p, is p Dimention data of upper level
$fig, number of figure

$kl, k2, range of the number of clusters

$KK, is the number of clusters of upper level
gmselect.m

function [kO,MU_t,w0,Z2jk] = ve mselect(level, fig, D, W, MU, R, n, p, q, labels,Zk);
$[ Np ] = size( X });
global Structure;
global SaveW;

global SaveP;

global SavePROP;
global SaveMU;

global vl11i;

global v12;

global v13;

global D _rep;

global finishedAll;

CENTRE FSIZE = 10;
figure (fig):;
% Obtain button presses

%

fPrintf (' ——mmmm o m el \n');
fprintf('| Left Click on some center points now!\n')
fprintf('| [Right Click terminates...]\n'):
fprintf ('l Q = Quit all remaining plots\n');
fprintf('-———————c e e \n');
finished = 0;

NEWMU = [];

points = 0;
while ~finished
[x1 %2 button] = ginput(l);

if button == 'g' | button == 'Q'
finishedAll=1;
return;

end

if (button==3 | button==2) & points>l

finished = 1;
elseif button ==
NEWMU = [NEWMU; =x1 x2];
points = size(NEWMU,1);
plot(x1,x2,'k.', '"MarkerSize', CENTRE FSIZE*3-5);
text (x1,x2,num2str (points), 'FontWeight', 'Bold’', ...
'FontSize',CENTRE _FSIZE-3, 'Color','g', 'HorizontalAlignment', 'center');

end
end
hold on;
$(n p] = size(D);
(kO pl] = size(NEWMU);

tpi=pi*2; %2 PI
X =round(W'*D'); %X:x space data - 2D

% Create the histogram of training data
low_x=min(X(1l,:));

low y=min(X(2,:));

high x=max (X(1,:));
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high_y=max(X(2,:));

begin_ x=1;
begin_y=1:

end x=high_x-low_x+1;
end y=high_y-low y+1;

rk x=1:1l:end_x;
rk_ _y=1:1: end | y:

nrk_x=zeros(1,end_x);
nrk y=zeros(l,end_y);
nrk_xy=zeros(end x,end_y);

for j=1:n,
nrk_x(1,X(1,j)-low_x+l)=nrk x(1,X(1,j)-low_x+1)+1;
nrk_y(1,X(2,3)- -low _y+1) =nrk _y(1,X(2,3)- -low _y+1)+1;

nrk_xy(X(1l,j)-low_x+1,X(2,]j)-low_y+l)=nrk xy(X(l,j)-low x+1,X(2,])-low_y+1)+1;

end

hist_x=nrk x/n;
hist™ _y=nrk y/n,
hlst_xy~nrk_xy/n;

tfprintf('--------------- \n')
fprintf('! Top Level window culculation begins ...\n');
$Use 2D EM algorithm to perform the local training.
gerror=1.0/n/n;

for 1 = 1:%0

w0 (i)=1./k0;
VarO( ,2*1-1:2*%1) = 120*eye(2);
end

error=0.0000001;
%$error=0.000001;
err=100;
errl=err;
MUK=NEWMU;

sZzk = sum(Zk);

while err > error,
Fx = zeros(n,1l):;
Gxn = zeros{n, k0);
for kk = 1:k0

for j = 1:n
Gxn(j, kk) = sqrt(l./tpi)*exp( -{(X(:,j) " '-MUK(kk,:))*inv(Var0(:,
*(X(:,3)'"-MUK(kk,:))'/2)/sqrt(det (Var0(:,2*kk-1:2*kk)));
end
Fx = Fx + wO(kk)*Gxn(:,kk);
end
MUl=[];

for k = 1:k0
Zik(:,k) = wO(k)*Zk.*Gxn(:,k)./Fx;
zz = sum{Zjk(:,k));
wl(k) = zz/szk;
MULl(k,1) = sum(2jk(:,k).*X(1,:)"}/zz;
MU1(k,2) = sum{Zjk(:,k).*X(2,:)")/zz;
Ck = zeros(2,2);

for j = 1:n
Ck = Ck + Zik(3, k) *(X(:,3)"'-MUK(k, :))"*(X(:,3)"'-MUK(k,:));
end
Varl(:,2*k-1:2*k) = Ck./zz;
end
w0 = wl;
MUK = MU1;

Var0 = Varl;

2*kk-1:2*kk)) ...




for k=1:k0,
c(k)=1/(tpi*sqrt(Var0(1l,2*k~1)*Var0(2,2*k))}:
end

p_xy=zeros(end_x,end_y);
px=zeros(end_x,end_y);
py=zeros (end_x,end_y);
for k=1:k0,
vx=2*Var0(1l,2*k-1);
vy=2*Var0(2,2*k);
wOc=w0 (k) *c (k) ;
for ii=l:end_x,
px(ii,:)=-(ii+low x-1-MUK(k,1))."2/vx;
end
for jj=l:end y,
py(:,33)==(3j+low_y-1-MUK(k,2))."2/vy;
end
p_xy=p_xy+wlOc*exp (px+py);
end
err2=sum(sum{ (p_xy-hist_xy).”2))/(end_x*end_y);
err=abs(err2-errl);
errl=err2;
fprintf('*")
end % while err>error

§MU2 = zeros(k0,2);

%$index pointer to NEWMU

MU2=NEWMU;

$transform the means of X projection to the T data space
MU t = (W*MU2')';




% VE_SUB Generate hierarchical submodel
%

function newfig = ve_sub(fig,level,D,MU,q,its,R,vl,labels)

% Global variables for saving the structure
%

global Structure;
global SaveW;
global SaveP;
global SavePROP;
global SaveMU;
global SaveFlag;
global vl1l;

global v12;

global vl3;

global D_rep;
global finishedAll;

% Parameters
%

CENTRE_FSIZE = 14;

TITLE FSIZE = 14;

term = 0;

MON = 5;

(n p] = size(D);

[m p] = size(MU);

[DR NR RR] = ve reduc(D,n,p,R);

(W P PROP] = ve_inits(DR,MU,NR,m,p,q,RR}; )

newfig = fig+l;

finishedTraining = 0;

eTotal =[]
while ~finishedTraining %wl
figure(1l)

set (1, '"Name', 'Optimisation Monitor"')
‘set (1, '"MenuBar', 'None') )
clf

finishedTraining = 1;
figure(fiqg)

[x1 x2 button] = ginput(l);
if button == 32
finishedTraining = 0;
fprintf('** OK ** Continuing optimisation
else
finishedTraining = 1;
end
end %wl

hold on
set (fig, 'NumberTitle','Off")
fprintf('\n");

finishedAll = 0;

i=0;

while j<m & ~finishedAll %w2
j o= 3+
term = 1;
NEWMU =[]
handles = []
finishedSingle

.
’
’

0;

$lomub ] ]

AN A
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subplot (suby, subx, j)

set (fig, 'Name', [num2str (fig) ' *Selection Mode* active plot: ' num2str(j) 1)
ve_tick('on')

set (get (gca, 'Title'), 'Color','y"')

fprintf (' [Figure %d] Plot %d OPTIONS:\n',6 fig,j):

fprintf('\t Left Button = Select centre in active plot\n')
fprintf ('\t Right Button Optimise/skip active plot\n')
fprintf ('\t R Reset centres\n')

fprintf('\t Q Quit all remaining plots\n')
fprintf ('\t Numeric Key Change visualisation type\n')
while ~finishedSingle & ~finishedAll % w3

(|

n

[x1 x2 button] = ginput(l);

if button >=48 & button <=57

vl = button-48;

if rem(vl,4)==1 & isempty(labels)
vl = vl-1;
fprintf (['Cannot change to visualisation level %d’
' - no class labels\n'], vl+l);

else
fprintf('Changing to visualisation level %d\n', vl);
NEWMU = [];
handles = []:
clf
ve mvis(vl,D,W,P,MU,pjy,n,m,p,q,labels);

end

subplot (suby, subx, j)

ve_tick('on')

set (get (gca, 'Title'), 'Color','y")

elseif (button == | button == 3) & size(NEWMU,1l) ~=1
finishedSingle = 1;

elseif button
finishedAll

= 'q' | button == 'Q'
1;

elseif button == 'r' | button == 'R’
delete (handles);
NEWMU = [];
handles =[]

elseif button ==
NEWMU = [NEWMU; x1 x2];
points = size (NEWMU, 1);
handles = [handles ;plot(xl,x2,'b.','MarkerSize',CENTRE_FSIZE*4)];
handles = [handles ;text (x1l,x2,num2str(points), 'FontWeight', 'Bold',...
'FontSize',CENTRE _FSIZE, 'Color', 'w', 'HorizontalAlignment', 'center')];
end
end %w3

if finishedAll
return;
end

nmu = size (NEWMU,1);

if nmu~=0
NEWMU = NEWMU*W((j-1)*p+l:j*p,:)'+ ones(nmu,l)*MU(F,:);
fprintf('\n** OK ** Generating Mixtures at level %d ...\n', fig-1);

newfig ve sub(newfig, level+l,D,NEWMU, q,its,pjy(:,3),vl, labels);
term = 0;
figure(fig)
Structure = ([Structure ; level term];
if SaveFlag
SaveW = [SaveW ; W((j-1)*p+l:3*p,:)];
SaveP = [SaveP ; P(j)]:
SavePROP = ([SavePROP; pijy(:,3)"'}:
SaveMU = [SaveMU; MU(j,:)];




end
elseif finishedSingle

Structure = [Structure ; level term]:;

if SaveFlag
SaveW = [SaveW ; W((j-1)*p+l:j*p,:)];
SaveP = [SaveP ; P(j)):
SavePROP = [SavePROP; pjy(:,3)'];
SaveMU = [SaveMU; MU(j,:)1:;

end

end

ve tick('off'")
set (get (gca, 'Title'), 'Color', 'w')
end % w2

if finishedAll
for 3jj = jm
Structure = [Structure ; level 11];
if SaveFlag
SaveW = [SaveW ; W((jj-1)*p+l:jj*p,:)1;
SaveP = [SaveP ; P(jj)]:
SavePROP = [SavePROP; pjy(:,33)'1:
SaveMU = [SaveMU; MU(3j,:)]
end
end
end

.
4

set (fig, 'Name', [num2str (fig) ': Finalised'])




% PV _MVIS Generate multiple visualisation plots at a single level
% .

% uc: upper level cluster number

function ve mvis(level,D,WW,MU,R,n,p,q, labels, Z2jk)
global Structure;

global SaveW;

global SaveP;

global SavePROP;

global SaveMU;

global vl1i;

global v12;

global vl13;

global D rep:

global finishedAll;

if level==
ve_vis_t (D,WW,MU,R,n,p,q, labels, Z2jk);
return;

end

[ulr ulc]l=size(MU);
placey = 1;
placex = ulr;
if placex>=4 & placex<=6
placex = ceil(placex/2);placey=2;
elseif placex>6 & placex<=12
placex = ceil(placex/3);placey=3;
elseif placex>12
placex = ceil(placex/4);placey=4;

end
scale = 5;
ve fsize(placex*scale,placey*scale);
if vl2==
whitebg(gcf, 'w');
else
whitebg(gcf, 'k'");
end

for j = 1l:ulr
subplot (placey,placex, Jj)
$Xm = D - ones(n,1l)*MU(],:}"';
$Xk = Xm.*Zjk(:,3);
% [PCS, A, B, New] princomp( Xk );
SWW(:,2*j-1: 2*3) PCS(:,1:2);
ve vis t(D,WW(:,2*%j-1: 2*j),MU(]j,:),R,n,p,q,labels,Zik(:,3));
axis('square');
ve tick('off')
set (gca, 'Box', 'On"')
t = sprintf('picture %d ', j);
title(t , 'FontSize',12);

¢discardFraction = 100* (p-q)*P(j)/(p*P(]j) + .
% trace(W(({j-1l)*p+l:j*p,:) " *W((Jj-1)*p+l:J*p,:))):
%t = sprintf('{\\bf %d} (%2.1£%%)', j, discardFraction);
$title(t_, 'FontSize',612);
end




.

-

function [meanl x,Zjk]=ve_sub_em(uc,D,mean0_x, Zk,w0,itr)
% [ucr uccl=size(uc);

[kO kci=size(mean0 _x);

[n pl=size(D);

fprintf('! EM start ....");

$ Initializing the parameters of mixture of Gaussians

% Initinalize the covariance matrix

$Use EM algorithm to perform the local training.
Var0={];
for i = 1:k0
VarO(l:p, (i-1)*p+l:i*p) = 20*eye(p):

end
tpi=2*pi;
MUK=meanO_x;
sZk = sum{(Zk);
for itra=l:itr
% while err > error,

Fx = zeros(n,1);

Gxn = zeros{n, k0);

for kk = 1:k0

for j = 1:n
Gxn(j,kk) = sqgrt(l./tpi)*exp(~(D(j,:)-MUK(kk,:))*inv(VarO(1l:p,p*(kk-1)+

l:p*kk))...
*(D(j,:)-MUK(kk,:))'/2)/sqrt(det (VarO(:,p* (kk-1)+1:p*kk)));
end
Fx = Fx + w0 (kk)*Gxn(:,kk);
end
MU1l=[];

for k = 1:k0
% Zjk(:, k) = wO(k)*Zk(:,uc(k)).*Gxn{(:,k)./Fx;
Zjk(:, k) = wO(k)*Gxn(:,k)./Fx;
zz = sum(Zik(:,k));
$wl(k) = zz/sZk(uc(k)):
wl(k)=zz/n;

for j=1l:p
MUl (k,3j) = sum(Zjk{:,k).*D(:,3))/zz;
end
Ck = zeros(p,p);
for j = 1:n
Ck = Ck + Z3ik(j, k) *(D(F,:)~MUK(k, :)) ' *(D(j,:)-MUK(k,:));
end
Varl(:,p*(k-1)+1:p*k) = Ck./zz;
end
w0 = wl;
MUK = MU1;

Var0 = Varl;
$fprintf ('*"');
end % while err>error
meanl x=MUK;
for k = 1:k0
Zijk(:, k) = Zik(:,k).*Zk{(:,uc(k));
end

fprintf(' end.\n'");
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VE VIS Plot a single visualization projection

D: data, W:top 2 eigen vectors, MU: center selected for suitable dispaly
R: for deep level display

unction ve_vis_t(D,W,MU,R,n,p,q,LABELS, Zjk, BLOB_SIZE)

Some useful definitions

Font definitions for VTYPE 9

OO O O o0 OO Hh OO O A° OO

global Structure;
global SaveW;
global SaveP;
global SavePROP;
global SaveMuU;
global vll;

global v12;

global v13;

global D _rep:;
global finishedAll;

FONT_ NAME = 'ZapfDingbats';
FONT SYMBOLS = [113 117 109 98 102 166 108];
FONT SIZE = 6;

% Size of font for box labels
CENTRE FSIZE = 8;

$ Marker type for classes > 5
OVER5_MARKER = 'd';

% The following defines the number of colour gradations. Could increase this
% for 32k or 16M colour screens
COL_STEP = 16;

if nargin == 9
BLOB_SIZE = 30;

end

if v13 ==
BLOB_SIZE = 14;

end

R = R/max (max(R));

load cols.def

cols = cols/255;

colsw = ones(5,3)~cols*0.75;
colsw(5,:) = {0.75 0.75 0.75];
symv = FONT_SYMBOLS;

sym = setstr(symv);

THRESHOLD = 1/(2*COL_STEP);
X = (D-ones(n,1)*MU).*(ones(p,1)*Z2jk")"' * W ;

if (vll == 2) & BLOB_SIZE>0
[U S V] = svd(W,0);
distFactor = sqgrt(sum(((D-ones(n,1)*MU)* (eye(p)-U*U'))'.*2)");
distFactor = distFactor/max(distFactor (R>THRESHOLD) ) ;
% These next lines should help with some color problems
distFactor = fix(distFactor * COL_STEP)/COL_STEP;

end

R = fix(R*COL_STEP)/COL_ STEP;

hold on

if BLOB_SIZE>0
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[y index] = sort(R);

first = min(find(y>THRESHOLD) ) ;
for i = first:n
lb=D_rep(index(i));
if v11l~=9
h = plot(X(index(i),1),X(index(i),2),'."):
if vll == | vlil ==
set (h, 'Color', (1 0 O]*R{index(i)), 'MarkerSize', BLOB_SIZE)
if vl3==
set (h, '"MarkerSize',BLOB_SIZE*2-18)
text (X (index (i), 1),X(index (i}, 2),num2str(1lb), 'FontWeight', 'Bold"', ...
‘FontSize',CENTRE_FSIZE+2,'Color‘,'y','HorizontalAlignment',’center');
end
end
if vl1l ==

if LABELS(index (i))>5
set (h, '"Marker',OVER5_MARKER );
set (h, 'Color',R(index (i) ) *cols (LABELS (index{i))-5,:),...
'MarkerSize',BLOB _SIZE, 'LineWidth', 1)
else
set (h, 'Color',R(index(i)) *cols (LABELS (index(i)),:), '"MarkerSize', BLOB_SIZE)
end
if v13==
set (h, 'MarkerSize', BLOB_SIZE*2-18)
text (X (index(i),1),X(index(i),2),num2str(1b), 'FontWeight', 'Bold’, ...
'FontSize',CENTRE_FSIZE+2, 'Color','y', 'HorizontalAlignment', 'center’);

end
end
if vll == 2
col = ([1 1 0] - distFactor(index(i))*[1 1 -11)*R{(index(i));
set (h, 'Color',col, 'MarkerSize', BLOB_SIZE)
if vl3==

set (h, 'MarkerSize',BLOB_SIZE*2-18)
text (X(index(i),1l),X(index(i),2),num2str (1lb), 'FontWeight', 'Bold"', ...

'FontSize',CENTRE FSIZE+2,'Color','y','HorizontalAlignment', 'center');
end

end

if vll ==
if LABELS (index(1i))>5
set (h, 'Marker',OVER5 MARKER );

set (h, 'Color',[1 1 1] - R{index(i))*colsw(LABELS (index(i))=5,:),...
'MarkerSize',BLOB_SIZE, 'LineWidth', 1)
else

set (h, 'Color', (1 1 1] ~ R(index(i))*colsw(LABELS(index(1i)),:),...
'MarkerSize',BLOB_SIZE)
end
if v13==
set (h, 'MarkerSize',K BLOB_SIZE*2-18)
text (X(index (i),1),X(index(i),2),num2str(lb), 'FontWeight', 'Bold"', ...
'FontSize', CENTRE_FSIZE+2, 'Color','y’', 'HorizontalAlignment', 'center');
end
end
else % VL1=9
text (X(index(i),1),X(index (i), 2),setstr (sym(LABELS (index(i)))),...
'FontName', FONT_NAME,'FontSize', FONT_SIZE,...
‘Color', {1 1 1] - R(index(i)), 'HorizontalAlignment', 'center');

end
end % for loop
limits = [min(X{index(first:n),1)) max(X(index(first:n),1))]:
adjust = (limits(2)-limits(1))*0.025;
if adjust

limits = limits + adjust*[-1 1];
set (gca, 'xlim’',limits)
end
limits [min(X(index (first:n),2)) max{X(index(first:n),2))1;
adjust = (limits(2)-limits(1))*0.025;
if adjust
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limits = limits + adjust*([-1 1};
set (gca, 'ylim',limits)

end
else $BLOB_SIZE < O
%
% Nasty hack to enable the plotting of boxes
%
PERBOX = 6;
for i = 1:n/PERBOX
if v11>4
plot (X((i-1)*PERBOX+2:i*PERBOX,1),X((i-1) *PERBOX+2:1i*PERBOX, 2), 'k-")
else
plot (X ((i-1)*PERBOX+2:1i*PERBOX, 1) ,X((i~-1) *PERBOX+2:1i*PERBOX, 2), 'w-")
end
x1l = X((i-1)*PERBOX+1,1);

X2 = X{(i-1)*PERBOX+1,2);
plot (x1,x2,'b."', 'MarkerSize',CENTRE_FSIZE*3.5);
text (x1,x2,num2str (i), 'FontSize',CENTRE_FSIZE, ...
'Color','w','HorizontalAlignment', 'Center');
end
end
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ABSTRACT

As a strategic move toward improving the utility of computer-aided diagnosis (CAD) in breast cancer detection, this
work aims to develop a computer-based decision support system, through a visual mapping of featured database,
to explain the entire decision making process jointly by the computer-encoded knowledge and the user-interaction.
The main purpose of the work is twofold: enhance the clinical utility of CAD and provide a mechanism for optimal
system design. We adopt a mathematical feature extraction procedure to construct the featured database from
the suspicious mass sites localized by the enhanced segmentation. The optimal mapping of the data points is then
obtained by learning a hierarchical normal mixtures and associated decision boundaries. A visual explanation of
the decision making is further invented through a multivariate data mining and knowledge discovery scheme. In
particular, using multiple finite normal mixture models and hierarchical visualization spaces, new strategy is that
the top-level model and projection should explain the entire data set, best revealing the presence of clusters and
relationships, while lower-level models and projections should display internal structure within individual clusters,
such as the presence of subclusters, which might not be apparent in the higher-level models and projections. We
demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method
to the visual explanation in CAD for breast cancer detection from digital mammograms.

1. INTRODUCTION

In order to improve mass detection and classification in clinical screening and/or diagnosis of breast cancers, many
sophisticated computer-assisted diagnosis (CAD) systems have been recently developed. Although the clinical roles
of the CAD systems may still be debatable, the fundamental role should be complementary to the radiologists’
clinical duties or for automated high risk population screening. Literature survey has indicated that (1) most CAD
systems are “black” boxes to the users and (2) no working link between “evaluation” and “improvement”. This
paper addresses the further development of CAD for mass detection based on (1) construction of featured knowledge
database; (2) mapping of classified and unclassified data points; and (3) development of a visual exploration and
explanation interface.

Although many previously proposed approaches have led to impressive results, several fundamental issues remain
unresolved. For example, Receiver Operating Characteristics (ROC) analysis can provide an overall performance
evaluation, it may not help the improvement of each of the multiple components in CAD system. Furthermore, since
the machine observer and human observer may not detect the same set of masses, the “black box” nature of most
CAD systems may prevent a natural on-line integration of human intelligence and further upgrade of a CAD system.
Our effort is to: (1) provide a visual map of featured database before knowledge encoding component, so to evaluate
and improve the pre-processing and signature extraction; (2) based on the map to design an optimal classifier best
fitted to this particular database structure for knowledge encoding; and (3) combine the map, the classifier output,
raw image, and user interface to explore and explain the whole decision making process by both radiologist and CAD
systems.

Further author information: Send correspondence to Y. Wang (E-mail wang@pluto.ee.cua.edu),

In Medical Imaging 2000: Image Processing, Kenneth M. Hanson, Editor,
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2. BACKGROUND

As the first step toward understanding multivariate data sets, cluster information reveals insight that may prove
useful in knowledge discovery since the growing volume of complex data are often high dimensional, multimodal,
and lacking in prior knowledge..#5° Several new visualization methods have been progressively developed to model
and display the contents of the data sets.46-911:1¢  However, although such algorithms can usefully characterize
the content of simple data sets, little comprehensive study has been reported that proves adequate in the face of
multimodal and high dimensional data sets.%%14 For example, a single projection of the data onto a visualization
space may not be able to capture all of the interesting aspects of the data set. This motivates the consideration of a
hierarchical visualization paradigm involving hierarchical statistical models and visualization spaces.

Once we explore the possibility of using many complementary visualization subspaces, cluster decomposition
and dimensionality reduction are the two major steps. Cluster decomposition permits the use of relatively simple
models for each of the local structures, offering greater ease of interpretation as well as the benefits of analytical and
computational simplification. On the other hand, dimensionality reduction allows better visual interpretation and less
computational demand. Many researchers have recently proposed various methods to improve data visualization.5?
The work most closely related to our methodology was reported by Bishop and Tipping in.%!? They introduce a
hierarchical modeling and visualization algorithm based on a two-dimensional hierarchical mixture of latent variable
models, whose parameters are estimated using the expectation-maximization (EM) algorithm.*'® The construction
of the hierarchical tree proceeds top down in which the cluster decomposition is driven interactively by the user, and
optimal projection is determined by maximum likelihood principle.

In this paper, we propose using standard finite normal mixtures (SFNM) and hierarchical visualization spaces for
an effective data modeling and visualization. The strategy is that the top-level model and projection should explain
the entire data set, best revealing the presence of clusters and relationships, while lower-level models and projections
should display internal structure within individual clusters, such as the presence of subclusters, which might not be
apparent in the higher-level models and projections. With many complementary mixture models and visualization
projections, each level will be relatively simple while the complete hierarchy maintains overall flexibility yet still
conveys considerable cluster information. Based on the concept of combining finite mixture modeling!® and principal
component projection®!4 to guide cluster decomposition and dimensionality reduction, the particular advantages of
our algorithm are:

1. At each level, a probabilistic principle component extraction is performed to project the softly partitioned data
set down to a two-dimensional visualization space, leading to an effective dimensionality reduction, allowing
effective separation and visualization of local clusters®®15;

2. Learning from the data directly, information theoretic criteria are used to select model structures and estimate
its parameter values, where the soft partitioning of the data set results in a standard finite normal mixture
distribution best fitted to the data?+21-25;

3. By alternatively performing principal component projection and finite mixture modeling, a complete hierarchy
of complementary projections and refined models can be generated automatically, allowing a new paradigm of
knowledge discovery.4-6:°

3. THEORY AND METHOD

One of the difficulties inherent in data visualization is the problem of visualizing multi-dimensionality.#®? When
there are more than three variables, it stretches the imagination to visualize their relationships. Fortunately in data
set with many variables, groups of variables often form clusters.®1%:16  Thus, our approach includes two major
complementary components: (1) dimensionality reduction by probabilistic principal component projection and (2)
cluster decomposition by adaptive soft data clustering.

Assume the data points {t;} in the data space come from Ky clusters {61, ..., 0k, ..., 0tk, }, where 8 is the
Gaussian kernel parameter vector of cluster k in the model. Recently there has been considerable success in using
the SFNM to model the distribution of a multimodal data set,7:10:19:26 gych that the data distribution takes a sum
of the following general form:

Ko
p(t) =3 mig(tl6ek) 1)
k=1

137




4 |

where m, is the corresponding mixing proportion, with 0 < mx < 1 and Y 7 = 1, and g is the Gaussian kernel.
The problem of SFNM modeling addresses the combined estimation of regional parameters (7, 8¢x) and detection
of structural parameter Ko in Eq. (1) based on the observations t. One natural criterion used for estimating
the parameter values is to minimize the distance between the SFNM distribution f(t) and the data histogram f;.
Suggested by information theory,'®?° relative entropy (Kullback-Leibler distance) is a suitable measure, given by

fe(t)
HOR

D(fllf) th ) log @)

We have previously shown that distance minimization based on (2) is equivalent to the maximum likelihood (ML)
estimation under a data independency approximation,” and when Kj is given, the ML estimate of the regional
parameters can be obtained using the EM algorithm.15:19:26

There are three major problems associated with the current approach. First, when the dimension of the data
space is high, the computational complexity of implementing the EM algorithm in t-space is very high. Second, the
initialization of the EM algorithm is often heuristically chosen, which may lead to both local optima and compu-
tational complexity. Finally, since the number of the local clusters in a particular data set is generally unknown,
model selection is a prerequisite. A natural way, with greater practical applicability, to tackle these problems is to
introduce user interaction with the system.® Data mining and knowledge discovery are not processes that can be
orchestrated a priori. Training algorithms and expected behavior can be specified, but the actual learning must follow
for insight and spontaneous inspiration.® For example, by examining plots of principal component space, researchers
often develop a deeper understanding of the driving forces that generated the original data, and effortlessly grasp
the general characteristics of the data and propose an initial solution.46:9

Principal component analysis (PCA) is an effective method for achieving dimensionality reduction.!*'1?2 For
a set of observed d-dimensional data vectors {t;}, i € {1,...,N}, the g principal axes w,,, m € {1,...,q}, are
those orthogonal axes onto which the retained variance under projection is maximal. It can be shown that the
principal axes w,, are given by the ¢ dominant eigenvectors (i.e., maximal eigenvalues) of the sample covariance
matrix Ct—z (t; — pe)(t; — p,)T /N such that C¢w,, = AWy and where i, is the sample mean. The vector
x; = WT(t; — p,), where W (Wl,Wz, .., W), is thus a ¢ dimensional reduced representation of the observed
vector t;. The advantage of PCA is twofold: the projection onto the principal subspace (1) minimizes the squared
reconstruction error!?!5 and (2) maximizes the separation of data clusters.’® Although the effectiveness of applying
PCA in an unsupervised manner is highly data-dependent, our approach has a simple optimal appeal in that if the
local clusters are linearly separable in a two- or three-dimensional space the principal component projections allow
best separation of the clusters.!®

Suppose the data space is d-dimensional. Now consider a two-dimensional projection space x = (z;,3)T together
with a linear transformation, that maps the data space to the projection space by x = WT(t — pu,) where W is a
d x 2 matrix. For a normal distribution p(t) over the data space, using the rules of probability, a similar reduced
dimension probability distribution of the new variables {x;} in the projection space is obtained from the convolution
of the projection model with the true distribution over data space in the form of f(x) = [ p(x[t)p(t)dt.*1217 Since
the conditional distribution p(x|t) = 6(x — WTt + WT,), where 6(.) is the delta function that §(0) = 1 and
8(# 0) = 0, it can be shown that f(x) is simply defined by the Radon transform of p(t), i.e., f(x) = [ p(t)6(x -
WTt + WTut)dt.18 According to the linear superposition property of Radon transform and the projection invariant
property of normal distribution, if p(t) is a SFNM distribution, the data distribution in the projection space has a
similar reduced dimension form as Eq. (1)

Ko KO
£ = Y [ a(t180)8x ~ Wt WThy)dt =3 mug(xiOe). ©
k=1 k=1

However, because of its global linearity, the application of PCA is necessarily somewhat limited.}>'3  For
example, the inherent multimodal nature of the data set may be completely obscured when it is projected onto the
lower dimensional principal subspace. Thus, it is important to note that although the cluster structure of the data set
may be evident from the higher dimensional plot of the raw data, it is quite conceivable to have the intrinsic cluster
structure of the data concealed after a projection in the more general case of high-dimensional data sets.}> An
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alternative paradigm is to model multimodal data set with a collection of local linear subspaces through probabilistic
principal component analysis as shown in Fig. 1.32-14 The method is a two-stage procedure: a soft partitioning of

the data space followed by estimation of the principal subspace within each partition. For the sake of computational

simplicity, it is reasonable to consider the model parameter values being estimated firstly in the projection space and
then further fine tuned in the data space.

The association of a SFNM distribution with PCA offers the possibility of being able to visualize complex data
structures through a mixture of probabilistic principal component subspaces. By a simple extension of the maximum
a posterior for data classification in the standard Ky-ary Bayes hypothesis testing,52° we can obtain a principal
component projection along the desired axes onto which a particular portion of the data set is highlighted, by
weighting all of the data points in the whole data set with their posterior probabilities belonging to that portion.
This involves a soft clustering of the data points in which instead of any given data point being assigned exclusively
to one principal component subspace, the responsibility for its generation is shared among all of the subspaces.

Under the SFNM model defined by Eq. (1), the posterior Bayesian probability z; of a given data point t;
belonging to cluster k is
meg(t:}Os)

Zifp = ————%, 4
where k = 1,2,...,Kp and ), zix = 1. These posterior probabilities, together with the computational simplicity
of performing PCA (involving no more than finding the top g eigenvectors of the covariance matrix of the data
points) make it a good candidate for the linear subspace in the mixture. The g principal components define the
local subspace assumed for the multimodal. The contributions of the input to the k subspace are the activities of
the weighted data points {t;x} for input cluster k. This can be obtained by tix = z;x(t; — 2, ), where g is the
weighted sample mean of cluster k:

> Zikt 3 ikt = ) (b — pp)T
= iR C, =2t 5
Heg S 2in t 3. ik (5)

The subspaces for the focused clusters are generated by a localized linear PCA such that Cex Wik = AmkWmk. It
is important to understand that each component in Eq. (1) now corresponds to an independent subspace model with
parameters Oy and Wy, where Wy= (w,,, Way, ..., Wqi). More precisely, consider the vector x;x = 2,6 W (t; — f1,)
to be a g dimensional reduced representation of k-cluster focused vector t;;, the corresponding probability distribution
is defined by

o(X[ W, Oy) = / 0(t106k)5(x ~ WTt + WT ) dt (6)

where the data mapping by Wy leads to an independent Radon transform. To interpret the corresponding set
of visualization subspaces, it may be useful to plot all of the data points on every plot. For this, we may create
a k-cluster focused projection in k-subspace by plotting the vector x;i, or display the density of “gray-level” in
proportion to the contribution which each point has for k-subspace with A[WT (t; — py)] = zik.

An important issue concerning unsupervised cluster decomposition is the detection of the structural parameter K,
called model selection.”14:15:19.25 This is indeed particularly critical in real-world applications where the structure of
the data patterns may be arbitrarily complex.® We propose to use two information theoretic criteria, i.e., the Akaike
information criterion (AIC)?! and minimum description length (MDL),?? to guide model selection. The major thrust
of this approach has been the formulation of a model fitting procedure in which an optimal model is selected from
the several competing candidates such that the selected model best fits the observed data, under Jaynes’ minimax
entropy principle stated as “the parameters in a model which determine the value of the mazimum entropy should
be assigned values which minimize the mazimum entropy”.232* For example, AIC tries to reformulate the problem
explicitly as an approrimation of the true structure by the model, implying that AIC will select the model that gives
the minimum value defined by

AIC(K,) = —2log(Lp1) + 2K, (7N

where Ly is the maximum likelihood of the model and K, is the number of free adjustable parameters in the model.
From a quite different point of view, MDL reformulates the problem explicitly as an information coding problem in
which the best model fit is measured such that it assigns high probabilities to the observed data while at the same
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time the model itself is not too complex to describe.?2 A model is selected by minimizing the total description
length defined by
MDL(K,) = ~log(LpL) + 0.5K, log N. 8

where the penalty term in MDL takes into account the number of observations. It should be pointed out that when
the cluster separability is poor, the performance of these two information theoretic criteria may not be reliable.2!25

As discussed above, the SFNM model identification is first performed over x-space. However, a mapping from
t-space to x-space may have the intrinsic cluster structure concealed, leading to an incorrect correspondence between
Eq. (1) and Eq. (3). We now extend the mixture representation of Eq. (1) to form a hierarchical mixture mode!
generally enough to be applicable to mixtures of any parametric density model. Based on the discussion of a two-level
system consisting of a single Radon transform at the top level and a mixture of KX, o normal distributions at the second
level, we can reformulate the hierarchy to a third level by associating a group Gi of SFNM models with each model

k in the second level, given by
Ko Lk,

PY =D ™ > Tieg(tlOcir 1)) (9)
k=1 Jj=1

where 7;;; again correspond to a set of mixing proportions, one for each k, with > ; Tilk = 1. The formation of the
hierarchy is guided by the model selection over x-subspaces, where each level of the hierarchy corresponds to a generic
model, with lower levels giving more focused and interpretable representations. Once again each component in Eq.
(9) now corresponds to an independent subspace model with Radon transform 9(x|Ox(r,5) = [ 9(t]0¢(k,5)6(x ~

T
Wiyt + Wik iy Begr,)dt.

4. ALGORITHMS

Based on the theory behind hierarchical mixtures of probabilistic principal component subspaces we have discussed
above, we now present the description of our algorithm involving major steps of the visual hierarchy construction.

Although the tree structure of the hierarchy may be empirically defined, %12 a more interesting effort, is to build the

tree automatically and interactively. Guided by the two information theoretic criteria, our algorithm progressively

proceeds by fitting a series of submodels to the clusters of the data set, in which model order is selected automatically

and algorithm initialization is driven interactively. A schematic summary of the algorithm is as follows:

1. Project the data set onto a single x-space, in which W is determined from the sample covariance matrix C
by fitting a single Gaussian model to the data set over t-space.

2. Learn f(x) for K = Kun,..., Kaprax, in which the values of 7, and O are initialized by the user and
estimated by the EM algorithm over x-space.

3. Calculate the values of AIC and MDL for K = K ; Ny -y KM ax, and select a model with K which corresponds
to the minimum of AIC and MDL. The model parameters obtained in x-space will be used to initialize the
mode] parameters in t-space for the learning in step 4.

4. Learn f(t) with Ko, in which the values of my, z, Mk, and Cgy, are fine tuned by the EM algorithm over
t-space..

5. Determine Wy from t; or Cy, and plot x;;, or h[W;{(t; — Her)] onto x-subspaces at the second level for visual
evaluation, for k = 1,2, ..., K,.

6. Learn Gi(t) by repeating steps 2 — 4 and construct x-subspaces at the third level by repeating step 5, for
k=1,2,.., K.

7. Complete the whole hierarchy under the information theoretic criteria, and plot all x-subspaces for visual
exploration and explanation.
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Our algorithm begins by determining W for the top level projection. For low dimensional data sets, we directly
evaluate the covariance matrix Ct to find W.1315 po. high dimensional cases, since only the top two eigenvectors
of the covariance matrix of the data points are of the interest, it may be computationally more efficient to apply our
previously developed APEX neural networks® to find W directly from the data points t; (Step 1). On the basis of
this single X-space, given a fixed K, the user then selects (Knmin,Kpra x) and points My on the plot corresponding
to the centers of apparent clusters. The EM algorithm can be applied to allow a SFNM (Eq. (3)) to be fitted to the
projected data through the following two-stage!9:26 form.

E-Step
T fadn,65)
M-Step
N N N n
7r’(c"+1) - 1 Zz(:) “(ZH) _ 2oing Zi(l?)xi C(fltc+l) - Zi:l Zi(:)(xi ~ I‘L)(ck))(xi - Mi'i))T (11)
ik X Y x = N (n
N i=1 2in1 z'i(:) 2in z-flc)
where at each complete cycle of the algorithm, we first use “old” set of parameter values to determine the posterior

probabilities zf,:' ) using Eq. (10). These posterior probabilities are then used to obtain “new” valyes 7r,£"+1), p,)(:,:H),

it is already at a local minimum.?® The model selection procedure will then determine the optimal number K, of
models to fit at the next level down using the two information theoretic criteria, where KX a=6Kg—1 including 2K,

means, 2K variances, Ky correlation coefficients, and K, — 1 mixing factors (Step 3). The resulting points ;42) in

data space, obtained by uio) = Wp,(jf) + Mg, are then used as the initial means of the respective submodels. Since
the mixing proportions 7 are pro jection-invariant, we simply assign a 2 x 2 unit matrix to the remaining parameters
of the covariance matrix Ctk. Once again the EM algorithm can be applied to aliow a SFNM (Eq. (1)) with Ko
submodels to be fitted to the data over t-space. In order to obviate the need to store all the incoming observations,
and change the barameters immediately after each data point, it may be computationally more efficient to apply our
previously developed probabilistic self-organizing map (PSOM), an incremental EM algorithm,” to estimate p(t).

With a soft partitioning of the data set using the PSOM, data points will now effectively belong to more than one
cluster at any given level. Thus, the effective input values are tie = 2 (t; — tey) for an independent visualization
subspace k in the hierarchy. We then extend our APEX algorithm to g probabilistic version, i.e., PAPEX 827 o
determine Wy, summarized as follows (Step 4).

1. Initialize the feedforward weight vector Wi for m = 1,2, and the feedback weight vector a; to small random
values at time i = 1. Assign a small positive value to the learning rate parameter 7.

2. Set m=1, and for ; = 1,2,..., compute
Yik()) = wh(@zie(t: — pyy),  wis(i + 1) = w1k (3) + nfy1s (6) zax (t; — Per) = v () wik(3)] (12)

For large i we have Wik (i) — Wy, where W1k is the eigenvector associated with the largest eigenvalue of the
covariance matrix Cj.

3. Set m =2, and for i = 1,2,..., compute
Y2k (8) = Wi (8) 2k (t: — pag, ) + ak(Dyie(i), war(i+1) = W2k (8) + nlyar (&) zi (i — g ) — Y3 () wai(3)] (13)

(i +1) = ak(5) — lysk (Dyre(s) + Y3k (i)ax(i)] (14)

For large i we have Wor(2) — way, where W2y is the eigenvector associated with the second largest eigenvalue
of the covariance matrix Ck.
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Having determined principal axes W, of the mixture model at the second level, we will construct the visualization
subspaces by plotting each data point t; at the corresponding x;z. Thus if one particular point takes most of the
contribution for a particular component, then that point will effectively be visible only on the corresponding subspace
(Step 5).

Determination of the parameters of the models at the third level can again be viewed as a two-step estimation
problem, in which further split of the models at the second level is determined within each of the subspaces over
x-space, and then the parameters of the selected models are fine tuned over t-space. Similarly, the resulting model
estimated over x-space are then used to initialize the means of the respective submodels over t-space. The cor-
responding Gx(t) can again be estimated using the EM or PSOM algorithm™1%26 to allow a SFNM distribution
with Ly o submodels to be fitted to the data. In the E-step, the posterior probability that data point t; belongs to
submodel 7 is given by

75169 (t:|O¢j1x) ‘
Zi(k,j) = ZikZijtk = Zik—l'g(t—i%t—:)'i- (15)

where z;;. are constants estimated from the second level of the hierarchy. The corresponding M-step includes

N N N
ik = izt Zikd) Hoge ) = iz Zifkg)bi Ci(k.j) = Limy Ziteg) (i = B, ) (i — Begr,3)” (16)
J - N ! t xj - N ' )
Dim1 ik 2i=1 Zi(k,5) YoiL) Zikg)

With the resulting z;(x, ;) in t-space, we can apply the PAPEX algorithm to estimate W ;y, in which the effective
input values are expressed by tij;) = zi(,j)(ti~ ut(k,j)). The next level visualization subspace is generated by

plotting each data point t; at the corresponding x;(x,j) = Zi(k’j)W’(I;c' 5 (i = Bk, 5)) in (K, j)-subspace (Step 6).

The construction of the entire tree structure hierarchy is automatically completed when no further data split is
recommended by the information theoretic criteria in all of the parent subspaces (Step 7).

5. ILLUSTRATION AND APPLICATION

We first illustrate the application of our algorithm to a simple synthetic data set. Fig. 1 (a) shows a data set
consisting of 450 data points generated from a mixture of three Gaussians in three-dimensional space. Each Gaussian
is relatively flat (has small variance) in one dimension. Two of these pancake-like clusters are closely spaced, while
the third is well separated from the first two. The dimensionality of this data set has been chosen to illustrate the
basic principle of the approach. The global view of the raw data over t-space clearly suggests the presence of three
distinct clusters within the data.

To explore the data characteristics, we first perform a single global PCA to project each data point onto a single
x-space (top level), shown in Fig. 1 (b). Both the user inspection and the two information theoretic criteria have
clearly suggested the presence of two distinct clusters within the projected data set. Based on a soft clustering of the
data points, we then apply PAPEX to both clusters and generate the two corresponding independent cluster-focused
subspaces (second level), as shown in Fig. 1 (c). Not to our surprise, the two information theoretic criteria have
suggested a further split of cluster 2 but not of cluster 1. Once again by performing three independent PAPEX, the
final cluster decomposition through the cluster-focused subspaces (third level) is completed shown in Fig. 1 (d).

With this three-level hierarchical data exploration, the capable nature of the approach is evident as the interim
two subspaces (second level) only attempt to highlight the data points which have already been modeled by their
immediate ancestor (top level). Indeed, the model fitting procedure has successfully discovered all three data clusters.
The original data clusters have been individually colored, and it can be seen that the red, yellow, and blue data
points have been well separated and highlighted in the third level subspaces.

As an example of a more complex problem, we consider a data set arising from a mixture of three closely spaced
Gaussians consisting of 300 data points, shown in Fig. 2 (a). Once again the original data clusters have been
individually colored. We first apply APEX to extract the global principal axis, indicated by the black line in Fig. 2
(a). The two information theoretic criteria have suggested the presence of three distinct clusters, where the user then
selects three initial cluster centers and the EM/PSOM algorithm is applied to perform a soft clustering of the data
points. This leads to a mixture of three independent probabilistic principal component subspaces whose principal
axes are separately extracted, indicated by the yellow lines in Fig. 2 (a). The contributions of each data point to
these subspaces, in terms of its “gray-level” h[t;] = zi, are displayed over t-space in Fig. 2 (b).
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Since the model selection and algorithm initialization are performed over x-space with user’s interaction, it may be
Belpful to investigate the visual effectiveness of dimensionality reduction using the probabilistic principal component
wiojections.*® Based on the estimated Wy, we have constructed each of the cluster-focused subspaces using both
Ruata graphics” (e.g., in terms of xix = zix W (t; — ;) and “data image” (e.g., in terms of A{WT (t; — 1e1)] = zik)
wchniques. As a more overlapped case, Fig. 2 (c-d) present the plots of “data graphics” and “data image” from the
eata set, where “data graphics” emphasizes the contribution of a particular data point to that particular subspace
goncerning its geometric distance to the center of the cluster, while “data image” emphasizes the effectiveness of a
@ata point reflecting its global appearance. It can be seen that the plot of each cluster is clean and well-shaped.

In order to quantitatively evaluate the effectiveness of our approach with user interactions,® we apply our
@lgorithm to a synthesized testing data set given in Fig. 3 (up-left). Using the APEX algorithm we accurately
gstimate the top global principal axis, indicated by the back line. By projecting the data points onto a two-
aimensional x-space, all three data clusters are visible. This plot indicates that although the second advantage of
PCA forementioned is highly data-dependent, when the data clusters are linearly separable in a projection space,
the principal component projections allow effective separation of the clusters.'6 We then apply the two information
theoretic criteria to examine this plots. In this case, we set Ky rny = 1 and Kpax = 5. The minima of both AIC
and MDL have clearly suggested a three-cluster data structure, as given by the curve in Fig. 3 (third block in the
second row). Thus a two-level SFNM model may be sufficient. We then conduct two experiments to assess the
performance of our algorithm. Since all the model parameters are known in this case, the true top principal axes of
the data clusters have been individually calculated. First, we compare the estimated top principal axes of the data
clusters using our algorithm with the corresponding true top principal axes. From the down-right block in Fig. 3, it
can be seen that the two sets of the top principal axes are perfectly matched (blue lines). Second, we use the global
relative entropy (GRE) between the data histogram and the estimated SFNM model to measure the goodness of
model fitting. The numerical result through our experiments indicates a very good performance with a GRE value

of 0.008 nats.

User interaction with the algorithm is an important issue. We have developed a user-friendly graphical interface
to facilitate the data visualization purpose, as shown in Fig. 3. By allowing the user to select the initial centers
of the data clusters demonstrated in Fig. 3, our experience has convincingly indicated a great reduction of both
computational complexity and local optimum likelihood. For example, compared to the results of model selection
-eported by Akaike?! and Wax,?® the curves of the AIC and MDL generated by our algorithm are much more
consistent and smooth, and user-initialized computation is five times (in average) faster than the random trials. It
should be pointed out that although the final SFNM model can be estimated, the pathways of achieving cluster
decomposition may be multiple. For example, in this case the user has the flexibility to select only two clusters in
the second level and to further split the “right” cluster, thus to adopt a three-level hierarchy. We believe that this
user-driven nature of the current algorithm is also highly appropriate for the visualization context.*4

Since a more convincing example should involve more clusters with multiple levels, we have also applied our
algorithm to the same data set used by Bishop&Tipping,¥ shown in Fig. 4 (a). This data set arises from a
noninvasive monitoring system used to determine the quantity of oil in a multiphase pipeline containing a mixture
of oil, water, and gas.* The experiment gives 12 diagnostic measurements in total. Our interim goal is to visualize
the structure of the data in the original 12-dimensional space. A data set consisting of 1,000 points is obtained
synthetically and the data is expected to have an intrinsic dimensionality of two corresponding to the two dominant
components (e.g., oil and water). However, the presence of different flow configurations leads to numerous distinct
clusters. We then apply our algorithm to perform a cluster discovery. Results from partially fitting the oil flow data
using a three-level hierarchical model are given in Fig. 4. It should be pointed out that since the “right” answer to
this real-world data set is not available, we are not able to validate this new result. However, we believe that this
example has clearly been highly successful, note how the selected single cluster (number 2) in the top-level plot, is
discovered to be two quite separated clusters at the second level.

As a final example, we consider the visual explanation in computer-aided diagnosis (CAD) for breast cancer
detection. As a step toward improving the performance of CAD system, we have put considerable efforts to conduct
various studies and develop reliable image enhancement and lesion segmentation techniques.” More precisely, we try
to make both the hidden data patterns and the neural network “black box” to be as transparent as possible to the
user (e.g., radiologists and patients) through interactive visual explanation. The clinical goal is to eliminate the false
positive sites that correspond to normal dense tissues with mass-like appearances through featured discrimination.
We adopt a mathematical feature extraction procedure to construct our database from all the suspicious mass sites
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localized by the enhanced segmentation.” The optimal mapping of the data points is then obtained by learning th&
generalized normal mixtures and decision boundaries, where a probabilistic modular neural network is developed 8
carry out both soft and hard clustering.” The joint histogram of the featured database extracted from true and falsy
mass regions are investigated and the features that can better separate the true and false mass sites are selected.

Our experience has suggested that three imagery features, i.e., site area, compactness, and difference entropy, werg
having good discrimination and reliability properties.

We then use our previously developed algorithm? to distinguish the true masses from false masses based on tha.
features extracted from the suspected regions. 150 mammograms were selected from the mammogram database:
Each mammogram contained at least one mass case of varying size and location. The areas of suspicious masses wetg,
identified following the proposed procedure with biopsy proven results. In a typical experiment, we have selected
a three-dimensional feature space consisting of compactness I, compactness I1, and difference entropy. It should,
be noticed that the feature vector can easily extend to higher dimensionality. A training feature vector set was
constructed from 50 true mass ROIs and 50 false mass ROIs, where ROI stands for region of the interest. In addition
to the decision boundaries recommended by the computer algorithms, a visual explanation interface has also been,
integrated with hierarchical projections. Fig. 5 (a) shows the database map selection with compactness definition I
and difference entropy. Fig. 5 (b) shows the database map selection with compactness definition II and difference
entropy. Our experience has suggested that the recognition rate with compactness I are more reliable than that with
compactness IL

We have conducted a preliminary study to evaluate the performance of the algorithms in real case detection, in
which 6 — 15 suspected masses per mammogram were detected and required further clinical decision making. We
found that the proposed visual explanation approach, together with CAD system, can reduce the number of suspicious
masses with a sensitivity of 84% at a specificity of 82% (1.6 false positive findings per mammogram) based on the
database containing 46 mammograms (23 of them have biopsy proven masses). Fig. 6 shows a representative mass
detection result on one mammogram with a stellate mass, indicated by the arrow in Fig. 6 (a). After appropriate
feature extraction, ten sites with brightest intensity were selected, shown in Fig. 6 (b). The featured vectors of these
candidates were submitted against the estimated “probability cloud” for visual explanation as a decision support,
together with the opinion recommended by our CAD system. The final results indicated that the stellate mass lesion
was correctly detected, confirmed by our experience radiologists, shown in Fig. 6 (c). It should be pointed out that
in this real-world application, a higher recognition rate may be controlled by the domain experts in balanciag the
trade-off between the false positive and false negative rates.”

6. DISCUSSION

We have presented a novel approach to visual explanation for data mining and knowledge discovery, which is both
statistically principled and visually effective. This method, as illustrated by the well-planned simulations and pilot
applications in computer-aided diagnosis, can be very capable of revealing hidden structure within data. It is
important to emphasize that in relation to previous work,*1!~!3 one interesting consideration with the present
algorithm is that the models are determined by the information theoretic criteria, and this criterion can not only
select the most appropriate model structure but also allow an user-driven portfolio as a double check. This approach
promotes a self-consistent fitting of the whole tree, so that an automated procedure for generating the hierarchy
becomes reality.? In addition, since we perform model selection and parameter initialization firstly over the projection
space, the computational complexity is greatly reduced in compared to the maximum likelihood estimation in full
dimension. Our case study of a seven dimensional data set has indicated at least a 50% reduction of the computational
time. Other possible advantages include the determination of data projection by maximum the separation of clusters
which in turn optimizes the other crucial operations such as model selection and parameter initialization,’® and
data rendering algorithms which permit user or hypothesis driven nature of the data projection.!4
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